Efficient and robust benchmarking for AI with benchopt
Niveau de diplôme exigé : Graduate degree or equivalent
Fonction : Temporary scientific engineer
A propos du centre ou de la direction fonctionnelle
Le centre de recherche Inria de Saclay a été créé en 2008. Sa dynamique s’inscrit dans le développement du plateau de Saclay, en partenariat étroit d’une part avec le pôle de l’Université Paris-Saclay et d’autre part avec le pôle de l’Institut Polytechnique de Paris . Afin de construire une politique de site ambitieuse, le centre Inria de Saclay a signé en 2021 des accords stratégiques avec ces deux partenaires territoriaux privilégiés.
Le centre compte 40 équipes-projets , dont 32 sont communes avec l’Université Paris-Saclay ou l’Institut Polytechnique de Paris. Son action mobilise plus de 600 personnes, scientifiques et personnels d’appui à la recherche et à l’innovation, issues de 54 nationalités.
Le centre Inria Saclay - Île-de-France est un acteur essentiel de la recherche en sciences du numérique sur le plateau de Saclay. Il porte les valeurs et les projets qui font l’originalité d’Inria dans le paysage de la recherche : l’excellence scientifique, le transfert technologique, les partenariats pluridisciplinaires avec des établissements aux compétences complémentaires aux nôtres, afin de maximiser l’impact scientifique, économique et sociétal d’Inria.
Contexte et atouts du poste
Numerical evaluation of novel methods, a.k.a. benchmarking, is a pillar of the scientific method in machine learning. However, due to practical and statistical obstacles, the reproducibility of published results is currently insufficient: many details can invalidate numerical comparisons, from insufficient uncertainty quantification to improper methodology. In 2022, the benchopt initiative provided an open source Python package together with a framework to seamlessly run, reuse, share and publish benchmarks in numerical optimization. With this project, we aim at making benchopt a new standard in benchmarking by empowering researchers and practitioners with efficient and valid benchmarking methods.
Mission confiée
The candidate will both contribute to the core benchopt library, and develop novel benchmarks for various AI fields, from optimization of large deep learning architectures to the evaluation of inverse problems resolutions. In particular, for core benchopt:
- Develop novel tools to better customize the HTML rendering of the benchmarks
- Improve the parallelization capabilities for the benchmarks
For the novel reference benchmark, a particular focus will be set on developing reference benchmarks for deep learning optimization, in particular with nanoGPT speed run optimization challenges, coupled with imagenet challenges.
Principales activités
Main activities:
- Participate in the development of the team's open source software benchopt
- Develop novel benchmarks in deep learning optimisation.
Additional activity: Participate to the team's research by providing support on how to evaluate novel methods on reference benchmarks.
Compétences
- Strong mathematical background. Knowledge in machine learning is a plus.
- Good programming skills in Python. Knowledge of a deep learning framework is a plus.
- The candidate should be proficient in English. Knowing French is not necessary, as daily communication in the team is mostly in English due to the strong international environment.
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
Rémunération
According to profile
Informations générales
- Thème/Domaine :
Computational Neuroscience and Medicine
Software engineering (BAP E) - Ville : Palaiseau
- Centre Inria : Centre Inria de Saclay
- Date de prise de fonction souhaitée : 2025-10-01
- Durée de contrat : 12 months
- Date limite pour postuler : 2025-09-30
Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
Consignes pour postuler
Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.
Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
Contacts
- Équipe Inria : MIND
-
Recruteur :
Moreau Thomas / thomas.moreau@inria.fr
L'essentiel pour réussir
We seek candidates strongly motivated by challenging research topics in machine learning for science. Applicants should have a strong mathematical background with knowledge of numerical optimization and machine learning. With regards to software engineering, proficiency in Python is expected, and experience in applying ML to large-scale data is a plus.
A propos d'Inria
Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.