2017-00113 - Post-doc subject in Probability and Statistics - Modeling and estimation of ctDNA dynamics for detecting targeted therapy resistance

Contract type: Public service fixed-term contract
Level of qualifications required: PhD or equivalent
Fonction: Post-Doctoral Research Visit

Context

Development of targeted therapies has been a real progress for the treatment of patients with cancer. Most of these therapies are kinase inhibitors, also called targeted therapies, and require assessing somatic mutations on DNA tumor to ensure the absence of resistance. It is now described that solid tumors are heterogeneous and contain a large number of different subclones. Their detection is rarely possible with common techniques like PCR or NGS and only with one tumor sample. During their development, cancer cells may undergo apoptosis or necrosis and their DNA is then released in blood in the form of circulating tumor DNA (ctDNA). It is a mirror of cancer heterogeneity and improvements of molecular assays sensitivity allows its detection with high precision.

The post-doc is funded from an ITMO Cancer project involving IECL (Institut Elie Cartan de Lorraine, Mathematics laboratory of Université de Lorraine), Inria (Institut National de Recherche en Informatique et Automatique), ICL (Institut de Cancérologie de Lorraine) and Strasbourg's CHRU (Centre Hospitalier Régional Universitaire). The goal of this collaboration is to develop mathematical models for the dynamics of ctDNA to predict response to targeted therapies for patients with non-small cells lungs cancer (NSCLC) and metastatic melanoma.

The Post-doc will take place in IECL Nancy under the supervision of Nicolas Champagnat, Anne Gégout-Petit and Pierre Vallois. The Institut Élie Cartan de Lorraine (IECL) is the laboratory of Mathematics of Université de Lorraine. The Probability and Statistics group, composed of more than 30 permanent members, is the largest one in east part of the France. Two Inria projects belong to this group: the first one called BIGS (Biology, Genetics and Statistics) works on statistics and stochastic modeling for Biology and Medicine; TOSCA (TO Simulate and CALibrate stochastic models) is the second one, with field of research stochastic modeling, control and stochastic numerical methods. The Post-doc takes part of a collaboration with ICL (Institut de Cancérologie de Lorraine) and CHRU Strasbourg. Regular meetings are planned between the different partners of the project.

Assignment

The post-doc project has two main objectives. First, to propose several models accounting for the dynamics of the concentration of resistant and sensitive ctDNA in a patient’s blood. The dynamics of the different types of cancer cells is governed by local interactions, hence the models should account for (ecological) interactions between them. Second, to design appropriate statistical estimation methods for the estimation of ctDNA concentrations.

The keys to success

Required qualification: Ph.D. thesis in probability or statistics. Specific knowledge on estimation of Markov processes is desirable. A strong interest in biological applications is also important.

Conditions for application

Defence Security: This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorisation to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy: As part of its diversity policy, all Inria positions are accessible to people with disabilities.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.
Main activities

The modeling part of the project will be based on standard stochastic Markov models, either discrete (multitype birth-death processes [1], branching processes [2]) or continuous (multidimensional diffusion processes, such as Feller diffusions [3] or logistic diffusions [4,5]). The statistical part consists in parametric estimation for these models. Any appropriate method for this may be used (likelihood maximization, Bayesian methods, MCMC for density estimation...). Finally, the direct statistical study (not based on models) can involve different methods (machine learning, curve clustering, random forests, discriminant analysis...). The statistical study in this project will be based at the beginning on data available from the literature and on simulated data, and later from data collected by the medical partners of the project.

Skills

Required qualification: Ph.D. thesis in probability or statistics.

Specific knowledge on estimation of Markov processes is desirable. A strong interest in biological applications is also important.

Benefits package

- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Flexible working hours
- Sports facilities

Remuneration

2653,00 brut mensuel