2017-00198 - Post-Doc / Micro-data learning for legged locomotion

Level of qualifications required: PhD or equivalent
Function: Post-Doctoral Research Visit
Level of experience: Recently graduated

About Inria

Inria, the French National Institute for computer science and applied mathematics, promotes "scientific excellence for technology transfer and society". Graduates from the world's top universities, Inria's 2,700 employees rise to the challenges of digital sciences. With its open, agile model, Inria is able to explore original approaches with its partners in industry and academia and provide an efficient response to the multidisciplinary and application challenges of the digital transformation. Inria is the source of many innovations that add value and create jobs.

Context

The selected post-doc will work in the ERC project ResiBots (funded by the European Research Council, http://www.resibots.eu). The overall goal of the ResiBots project is to develop novel learning algorithms that make it possible for autonomous robots to quickly discover compensatory behaviors when they are damaged (e.g. a broken motor) or when they encounter an unforeseen situation.

Demonstrations: [ResiBots]

This post-doc is at the intersection of machine learning (data-efficient reinforcement learning for motor learning) and robotics (mainly legged locomotion).

Assignment

Impressive results have been achieved in legged robotics thanks to recent advances in optimal control and to the increase of computational power. In particular, we can now optimize whole-body motions in real time in complex, redundant robots (e.g., [1]). In parallel, the machine learning community (including our group) introduced several algorithms (e.g., [2,3]) that allow robots to learn new behaviors with a few trials.

The objective of this post-doc is to develop new learning algorithms for robot learning that take advantage of state-of-the-art algorithms for legged locomotion, in particular in the case of mechanical damage (e.g. a broken arm) and long-term changes of the body (e.g., a payload). The main experimental platforms will be our 6-legged robot with force sensors on the feet (see: http://www.resibots.eu/photos.html) and a new 4-legged robot with direct drive motors. Experiments will take advantage of our motion capture facilities.

See also: http://members.loria.fr/JBMouret & http://www.resibots.eu


General Information

- Theme/Domain: Robotics and Smart environments
- Town/city: Villers-lès-Nancy
- Inria Center: CRI Nancy - Grand Est
- Starting date: 3/1/18
- Duration of contract: 2 years
- Deadline to apply: 3/5/18

Contacts

- Inria Team: LARSEN
- Recruiter: Mouret Jean-baptiste / jean-baptiste.mouret@inria.fr

The keys to success

A successful post-doc applicant should have a strong robotics and/or machine learning background with a track record of top-tier research publications, including relevant conferences (e.g., RSS, ICRA, IROS or ICML, UCAI, AAAI) and journals (e.g., AURO, TRo, IJRR, JMLR, MLJ, Neural Computation, RAS).

Conditions for application

Defence Security:
This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorisation to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy:
As part of its diversity policy, all Inria positions are accessible to people with disabilities.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.
Main activities

Main activities:
- Design new algorithms
- Implement and evaluate algorithms on the robots of the team
- Write scientific articles to be submitted to journals and conferences of machine learning and robotics

Skills

Required skills
- Strong knowledge of optimal control and/or machine learning are required, but we will definitely consider applicants who have expertise in only one of these two fields.
- A robotics engineer is dedicated to the project, but good C++ programming skills will be useful.
- Knowledge of ROS will be appreciated.

The official language of the team is English and most of the lab does not speak French. Good English skills are therefore required.

Benefits package

- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Flexible working hours
- Sports facilities

Remuneration

2653,00 € brut mensuel