by decreasing fingerprint uniqueness. The goal of this Ph.D. project is to reduce the capacity of fingerprints, as well as recommender systems to suggest configuration changes that improve privacy. We are particularly interested in the use of advanced classification algorithms to enhance users' privacy, and is expected to empirically assess theoretical results with from browser fingerprinting. The Ph.D. student will therefore explore algorithmic and mathematical extensions for over 3 years. These datasets will leverage the study of browser fingerprint diversity and infrastructure, and associated datasets we collected through the AmIUnique.org website and browser. Positioned in the context of online privacy and web tracking, this Ph.D. topic will focus on developing effective browser fingerprinting countermeasures. The PhD will benefit from our fingerprint research approaches to enhance users’ privacy, and is expected to empirically assess theoretical results with proof-of-concept tools. We are particularly interested in the use of advanced classification algorithms that will allow creating tight-knit groups of users that share the same fingerprint or similar fingerprints, as well as recommender systems to suggest configuration changes that improve privacy by decreasing fingerprint uniqueness. The goal of this Ph.D. project is to reduce the capacity of
nowadays and upcoming browser fingerprinting techniques to uniquely identify browsers.

The objectif of this Ph.D is to define and implement new strategies to protect against browser fingerprinting, in particular by reducing fingerprint uniqueness, while ensuring that the proposed solutions are acceptable by non-technical users.

Main activities

Main activities

In order to do so, we propose to apply the following methodology:

1. **Evaluate and classify the state of the art of browser fingerprinting techniques, including academic and those found in-the-wild (e.g., by reverse engineering commercial fingerprinting scripts and inferring their tracking strategies);**

2. **Evaluate the impact of current browser fingerprinting countermeasures. One of the ways to detect the presence of fingerprinting countermeasures is to look at inconsistencies they introduce in the fingerprint. Indeed, when these countermeasures alter attributes to spoof the browser’s identity, they may introduce impossible combination of attributes;**

3. **Model the distance between fingerprinted attribute values and between browser fingerprints.**

4. **Build a countermeasure that generates consistent fingerprints, and takes into account the strategies used by fingerprinters. One possible strategy to investigate would be to find users with similar fingerprints, and to apply minimal changes so that altered browser fingerprints look the same to fingerprinters.**

5. **Analyze the usability and the impact of the proposed countermeasure.**

This Ph.D. builds upon our previous work, Blink [Laperdrix15], a countermeasure that relies on virtualization (virtual machines or containers) and random reconfiguration to break fingerprint linkability. Although effective against tracking, Blink’s has overhead has shown to be a deterrent to its use and a new approach is needed. This Ph.D. also benefits from our studies regarding fingerprint statistical analyses [Laperdrix16], as well as advanced machine learning techniques to track browsers over long periods of time [Vastel18].

References

[iovation] iovation, “Multifactor Authentication and Online Fraud Prevention Solutions”.

Skills

Skills
The Ph.D. candidate will develop her/his skills in Web technologies, in particular Javascript. Moreover, the candidate will also develop skills in Python, as well as machine learning and statistical data analysis, among many other technologies.

As is a common practice in the Spirals research team, all source code is expected to be open sourced. The student should publish high-level academic papers, as well as participate in related open source communities. This should assist in the technological transfer from academic prototypes to industry-ready tools.

Benefits package

Benefits

- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Sports facilities
- Flexible working hours

More information about Lille:

http://www.lille3000.eu/portail/
http://www.lillemetropole.fr/mel.html

Remuneration

Remunerating

The gross monthly salary is 1982€ for the 1st and 2nd year and 2085€ for the 3rd year.