
Contract type : Public service fixed-term contract
Level of qualifications required : PhD or equivalent
Fonction : Post-Doctoral Research Visit
Level of experience : Recently graduated

About the research centre or Inria department

The Inria Sophia Antipolis - Méditerranée center counts 37 research teams and 9 support departments. The center's staff (about 600 people including 400 Inria employees) is composed of scientists of different nationalities (250 foreigners of 50 nationalities), engineers, technicians and administrators. 1/3 of the staff are civil servants, the others are contractual. The majority of the research teams at the center are located in Sophia Antipolis and Nice in the Alpes-Maritimes. Six teams are based in Montpellier and a team is hosted by the computer science department of the University of Bologna in Italy. The Center is a member of the University and Institution Community (ComUE) “Université Côte d’Azur (UCA)

Context

Societal context : The need to develop alternative energy sources to the current use of fossil fuel is of increasing importance. Indeed, the current rate of fossil fuel usage and its serious adverse environmental impacts (pollution, greenhouse gas emissions, ...) lead to an energy crisis accompanied by potentially disastrous global climate changes. Controlled fusion power is one of the most promising alternatives to the use of fossil resources, potentially with an unlimited source of fuel. One of the most successful concept for mastering fusion is magnetic confinement where an extremely hot ionized gas called a plasma is confined in a toroidal chamber thanks to a very strong magnetic field. This concept is studied in experimental devices called Tokamaks (A russian acronym for toroidal chamber). One of these machines called ITER (for International Thermonuclear Experimental Reactor) : https://www.iter.org/fr/org/ is currently being build in Cadarache (France) thanks to an international agreement involving 35 different countries. The physics of the plasma in a tokamak is extremely complex and its understanding requires a strong interaction between experiments, modeling and large scale numerical simulations.

Collaboration : This post-doc proposal requires strong interactions with the physicist teams in charge of the tokamak design and use. This may require frequent visits to the site of ITER in Cadarache.

Assignment

Description of the post-doctoral work : In a tokamak at the slow resistive time scale, the magento-hydrodynamics equations (MHD) is composed of a set of unsteady convection-diffusion equations for the plasma density and temperature and poloidal flux (transport step) while the momentum equation reduces to an equilibrium between the plasma pressure and the magnetic forces (equilibrium step). The coupling between equilibrium and transport is today address by coupling the 2D convection-diffusion equations for the plasma density and temperature and poloidal flux (transport step) while the momentum equation reduces to an equilibrium between the plasma pressure and the magnetic forces (equilibrium step). The coupling between equilibrium and transport is today address by coupling the 2D convection-diffusion equations for the plasma density and temperature and poloidal flux (transport step) while the momentum equation reduces to an equilibrium between the plasma pressure and the magnetic forces (equilibrium step). The coupling between equilibrium and transport is today address by coupling the 2D convection-diffusion equations for the plasma density and temperature and poloidal flux (transport step) while the momentum equation reduces to an equilibrium between the plasma pressure and the magnetic forces (equilibrium step). The coupling between equilibrium and transport is today address by coupling the 2D convection-diffusion equations for the plasma density and temperature and poloidal flux (transport step) while the momentum equation reduces to an equilibrium between the plasma pressure and the magnetic forces (equilibrium step). The coupling between equilibrium and transport is today address by coupling the 2D convection-diffusion equations for the plasma density and temperature and poloidal flux (transport step) while the momentum equation reduces to an equilibrium between the plasma pressure and the magnetic forces (equilibrium step). The coupling between equilibrium and transport is today address by coupling the 2D convection-diffusion equations for the plasma density and temperature and poloidal flux (transport step) while the momentum equation reduces to an equilibrium between the plasma pressure and the magnetic forces (equilibrium step).

In the proposed work we propose to abandon the 1D description of the transport step and use instead a 2D description of the transport in the physical domain on the same mesh that is used for the equilibrium step. Although this approach is more costly than the present one that uses a 1D description, it avoids the use of flux coordinates and therefore apply to the whole plasma domain relaxing the unrealistic assumption of vanishing current density outside the last closed flux line. However as the convection-diffusion equation is highly anisotropic, this approach needs to develop reliable and efficient discretization of this type of PDE. For this, it is proposed to extend some recent results on Asymptotic Preserving discretizations. Moreover, it will be necessary to show that this approach is able to recover the results of the the 2D-1D coupling approach when this one is successful.

Main activities

Develop a mathematical model describing coupling between Equilibrium and transport in a tokamak.

General Information

- Theme/Domain : Earth, Environmental and Energy Sciences
- Town/city : Sophia Antipolis
- Inria Center : CRI Sophia Antipolis - Méditerranée
- Starting date : 2018-11-01
- Duration of contract : 1 year, 8 months
- Deadline to apply : 2018-05-27

Contacts

- Inria Team : CASTOR
- Recruiter : Guillard Herve / herve.guillard@inria.fr

About Inria

Inria, the French National Institute for computer science and applied mathematics, promotes "scientific excellence for technology transfer and society". Graduates from the world’s top universities, Inria’s 2700 employees rise to the challenges of digital sciences. With its open, agile model, Inria is able to explore original approaches with its partners in industry and academia and provide an efficient response to the multidisciplinary and application challenges of the digital transformation. Inria is the source of many innovations that add value and create jobs.

Conditions for application

Before to apply, and preferably before march 20, it is strongly recommended to contact the scientific in charge of this offer.

Defence Security :

This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST).Authorisation to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy :

As part of its diversity policy, all Inria positions are accessible to people with disabilities.

Warning : you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.
Develop a consistent discretization for this model.

Participation to Conference and Workshop.

Integrate the developed code into larger software platforms written in C++, Fortran, Python or Matlab.

Skills

Knowledge in Computational Fluid dynamics and/or Plasma physics

Good programming skills in Python/Fortran/C or C++

Benefits package

- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Flexible working hours
- Sports facilities

Remuneration

Gross Salary: 2650 brutto per month