2018-00606 - Post-Doctoral Research Visit / Numerical schemes and simulations / Parallel anisotropic mesh adaptation: application to Immersed Boundary Method (IBM)

Contract type: Public service fixed-term contract
Renewable contract: Oui
Level of qualifications required: Graduate degree or equivalent
Function: Post-Doctoral Research Visit
Level of experience: Recently graduated

Context

Scientific context

Inside the European H2020 project, ExaQute (Exascale quantification of uncertainties for technology and science simulation), Inria is the leader of the work package parallel mesh generation and adaptivity. The ExaQute project aims at constructing a framework to enable Uncertainty Quantification and Optimization under Uncertainties on exascale systems. The goal will be addressed by combining State-of-the-Art dynamic task-scheduling technologies with space-time accelerated solution approaches, in which parallelism is harvested both in space and time.

The stochastic problem will be tackled by employing a novel Multi Level MonteCarlo approach thus allowing considering a high number of stochastic variables. New theoretical developments will be carried out to enable the use of aggressive mesh refinement approaches in combination with the MLMC approach. Both octree mesh adaptation and tetrahedral anisotropic adaptation will be considered as alternatives.

The developments will be open-source friendly and will follow a modular approach, thus maximizing future impact.

Assignment

During this 3 years project, the aim of CARDAMOM team is to provide a parallel anisotropic remeshing library: ParMmg. To achieve this goal, a two years post-doc position is offered inside CARDAMOM team, Inria Bordeaux Sud-Ouest. The candidate will develop and validate the parallel remeshing tool based on Mmg Platform (http://www.mmgtools.org). ParMmg will then be coupled to AEROSOL the Inria Computational Fluid Dynamics (CFD) platform for preliminary tests and to the code of our European partner CIMNE (Barcelona).

Main activities

Post-doc objectives

The work performed will follow those steps:

- ParMmg developments based on MPI and Mmg3D. This part will be done in collaboration with the Mmg consortium.
- 3D analytical validation test cases will be performed.
- In the context of IBM, 3D parallel adaptation to the level-set function (signed distance) will be done.
- To prepare the coupling of the library to existing CFD codes, the candidate will develop API functions.
 - Testing will be done with the code of CIMNE (part of the ExaQute deliverables).
 - And testing will be done with AEROSOL. This task involved IBM for the resolution of compressible flows. The field of application is in-flight ice accretion.

Skills

Requirements

General Information

- Theme/Domain: Numerical schemes and simulations
 Scientific computing (BAP E)
- Town/city: Talence
- Inria Center: CRI Bordeaux - Sud-Ouest
- Starting date: 2018-09-01
- Duration of contract: 12 months
- Deadline to apply: 2018-06-30

Contacts

- Inria Team: CARDAMOM
- Recruiter: Dobrzynski Cecile / cecile.dobrzynski@inria.fr

The keys to success

Conditions for application

Thank you to send:

- CV
- Cover letter
- List of publications
- letters of recommandation (when appropriate)

Defence Security:

This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorization to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy:

As part of its diversity policy, all Inria positions are accessible to people with disabilities.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.
Candidates are required to have a PhD in engineering, CFD or applied mathematics. Preferable qualifications for candidates include proven research talent, an excellent level in C or C++ programming. Knowledge in parallel programming (MPI) and CFD is mandatory. Candidates must be able to work in a team and interact with many people from different backgrounds.

For further details and applications, please contact Cecile Dobrzynski (cecile.dobrzynski@math.u-bordeaux.fr).

Benefits package
- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave

Remuneration

Duration of the contract : 12 months

2653 € / month (before taxes)