2018-00677 - PhD: Robust and light-weight overlay management for decentralized learning

Contract type: Public service fixed-term contract  
Level of qualifications required: Graduate degree or equivalent  
Fonction: PhD Position  
Level of experience: Recently graduated

Context

Context: Big Data, Machine Learning, and Decentralization

A growing number of companies are extracting value from the digital data produced by our modern society using Machine learning (ML) techniques. Most of these companies rely today on centralized or tightly coupled ML systems hosted in data centers or in the cloud. This is problematic as this concentration poses strong risks to the privacy of users, and limits the scope of ML applications to tightly integrated datasets under unified learning models.

To address these limitations, this PhD proposes to explore an alternative approach inspired by peer-to-peer networks in which users control their own system, and only exchange a limited amount of information to construct local machine learning models. This strategy is more amenable to preserving user privacy, and respecting the constraints possibly imposed on sensitive data-sets (such as health records, or personal financial data), and holds the potential for highly scalable and robust learning systems. This project aims to study the challenges raised by this strategy in terms of distribution and overlay management.

Funding

The PhD is funded by ANR (French Research Agency) within the PAMELA research project on decentralized learning, and will take place in collaboration with the project’s partners, and more particularly the Inria Teams MAGNET from Lille (https://team.inria.fr/magnet/), and CIDRE from Rennes (http://www.rennes.supelec.fr/ren/rd/cidre/).

Assignment

Research Objectives

Ideally, a decentralized machine learning system should deliver the best learning at a minimal cost (for instance in order to be able to execute on constrained personal devices) while providing a high level of privacy protection. These different goals are inherently in tension, and one of the PhD’s aims will be to explore to which extent they can be balanced using techniques borrowed from distributed computing and machine learning.

One of the PhD’s starting point is to take inspiration from the existing work on highly scalable decentralized mechanisms, such as epidemic (aka gossip) protocols [1, 4] and self-organizing overlays [2, 3, 8]. These systems are fully decentralized in that they do not rely on any central point of coordination. Instead, each participating machine (also called peer or node) only possesses a partial knowledge of the rest of the system, and interact with a small number of other peers. These systems use stochastic interactions to overcome node and network failures, while delivering a high level of performance at scale.

Our objective is to investigate how machine learning could execute on such decentralized systems. A machine learning task can frequently be expressed as an optimization problem, in which the optimized "variable" is a model capturing the relationship between the inputs and outputs of the task [7]. This project assumes that the nodes of a decentralized system each have access to a part of the data to be learned (e.g. a user’s preferences, or a hospital's records), and wish to solve related learning tasks. The key challenge consists in deciding which data should be exchanged by whom in order to achieve a given level of learning quality, resource consumption, and privacy protection.

Main activities

Tasks

To achieve this vision, we envisage in particular to explore in the context of this PhD the following two lines of research:

- We would like to study how biased decentralized sampling techniques might be able to rapidly bootstrap learning tasks while avoiding a broad exploration of the set of peers.
- In a second phase, we would like to explore how self-organizing overlays must be adapted to overcome node and network failures, while delivering a high level of performance at scale.

General Information

- Theme/Domain: Distributed Systems and middleware
- System & Networks (BAP E)
- Town/city: Rennes
- Inria Center: CRI Rennes - Bretagne Atlantique
- Starting date: 2018-09-01
- Duration of contract: 3 years
- Deadline to apply: 2018-06-15

About Inria

Inria, the French National Institute for computer science and applied mathematics, promotes "scientific excellence for technology transfer and society". Graduates from the world’s top universities, Inria’s 2,700 employees rise to the challenges of digital sciences. With its open, agile model, Inria is able to explore original approaches with its partners in industry and academia and provide an efficient response to the multidisciplinary and application challenges of the digital transformation. Inria is the source of many innovations that add value and create jobs.

Conditions for application

Application documents

Applicants should include in their application:

- a CV (up to two A4 pages)
- a short statement outlining their research interests and motivation for an embarking on a Ph.D. (up to half an A4 page)
- a recent grade transcript (when applicable)
- the names and addresses of at least two academic referees

Defence Security:

This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national
allow learning peers to rapidly and efficiently identify and contact desirable other peers for their learning tasks. We expect in particular that existing protocol will need to be adapted to ensure that the "routing field" on which these protocols are based is sufficiently continuous and strongly connected to ensure the convergence of the learning process.

References


Skills

- Ability to conduct research in a collaborative setting.
- Self-initiative, curiosity and experimental rigor.
- Ability to express oneself clearly and convincingly in both in written and oral English.
- A genuine drive to expand one’s knowledge and horizons.
- Excellent experimental and programming skills.
- Good understanding of discrete and continuous mathematics.

Benefits package

- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Flexible working hours
- Sports facilities