Benefits package
- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave

Main activities

- Study and analysis of state of the art literature
- Design and adaptation of new algorithms
- Design of the associated computer programs
- Writing of articles

Skills

The postdoctoral fellow will work in the Orpailleur Team, which is a research team at Inria Nancy Grand Est Research Center and at LORIA laboratory. He will work within the scientific environment of Inria and LORIA, and will be able to reuse proper software and hardware related to this research project.

Ideally, the postdoctoral fellow should have a thesis in computer science, or applied mathematics, or bioinformatics. Moreover, the fellow should have a good knowledge of machine learning and data mining techniques. Additional knowledge in biology and/or chemistry will be very appreciated.

Assignments

In this research work, we intend to combine numeric and symbolic classifiers for carrying the mining of molecular graphs w.r.t. domain knowledge. One approach could be the following. The structures of active antibacterial molecules can be analyzed thanks to graph mining techniques. Then numerical classifiers select potential antibacterial candidates in a supervised way, based on exact or approximate matching. Those candidates hold substructures related to known antibacterials. In turn, symbolic classifiers can be used for ranking candidates w.r.t. a set of domain constraints and preferences, or to some specific biologic and chemical objectives (non supervised classification). Such strategies where numeric and symbolic data mining operations are intertwined will be thoroughly studied in the HyGraMi research project.

The postdoctoral fellow will work with domain specialists and will benefit from past experiences in the domain. Researchers in the team have already worked on the design of molecule databases and on the combination of classifiers. In addition, the Orpailleur team collaborates with experts in antibacterials, who have built the ABC platform aimed at guiding the search for new antibacterials. The ABC platform includes a collection of more than 4,000 bacteria, which thus covers a large part of the bacteria responsible for human diseases, and as well the associated description of the resistance to antibiotics phenomena.

Objectives

The design of new drugs should take into account large volumes of heterogeneous data in an efficient way (molecular graphs, genomes, documents...) and needs a adapted data mining process. Following a supervised learning paradigm, there is a need for specialized databases of molecules known for being antibacterial agents (training set), databases of candidate molecules (test set), and as well knowledge bases about the resistance of bacteria to antibiotics from a biological and chemical point of view.

Such databases should be integrated for being deeply analyzed and for discovering relevant information on antibacterial candidates. Active molecules include substructures holding specific functionalities. Such substructures should be detected in the collection of available molecules and will qualify potential antibacterial candidates.

Context

Scientific Context.

The exploratory research project HyGraMi is defined in the context of the fight against the resistance of bacteria to antibiotics. The consequences of this resistance are multiple, with a management of patients becoming more and more difficult and costly, in humans and financial terms. Accordingly, the objective of the HyGraMi project is to design hybrid data mining strategies for discovering new antibacterial agents for the future.

These strategies will rely on a combination of numeric and symbolic classifiers, where the first include SVM, Random Forests, neural networks, while the second include Bayesian networks, clustering, graph mining and Formal Concept Analysis. Moreover, the classifiers can also be guided by domain knowledge and be complemented with specialized systems developed by biologists and chemists.

Assignments

In this research work, we intend to combine numeric and symbolic classifiers for carrying the mining of molecular graphs w.r.t. domain knowledge. One approach could be the following. The structures of active antibacterial molecules can be analyzed thanks to graph mining techniques. Then numerical classifiers select potential antibacterial candidates in a supervised way, based on exact or approximate matching. Those candidates hold substructures related to known antibacterials. In turn, symbolic classifiers can be used for ranking candidates w.r.t. a set of domain constraints and preferences, or to some specific biologic and chemical objectives (non supervised classification). Such strategies where numeric and symbolic data mining operations are intertwined will be thoroughly studied in the HyGraMi research project.

The postdoctoral fellow will work with domain specialists and will benefit from past experiences in the domain. Researchers in the team have already worked on the design of molecule databases and on the combination of classifiers. In addition, the Orpailleur team collaborates with experts in antibacterials, who have built the ABC platform aimed at guiding the search for new antibacterials. The ABC platform includes a collection of more than 4,000 bacteria, which thus covers a large part of the bacteria responsible for human diseases, and as well the associated description of the resistance to antibiotics phenomena.
French courses

Remuneration
Salary: 2653€ gross/month