2018-00806 - Connectionless Transmission in Wireless Networks (IoT)

Contract type : Public service fixed-term contract
Level of qualifications required: Graduate degree or equivalent
Other valued qualifications: Master 2 in Networking, Telecommunications or Computer Science
Function: PhD Position

About the research centre or Inria department

Located at the heart of the main national research and higher education cluster of the Université Paris Saclay, a major actor in the French Investments for the Future Programme (Idex, LabEx, IRT, Equipe) and partner of the main establishments present on the plateau, the centre is particularly active in three major areas: data and knowledge, safety, security and reliability; modelling, simulation and optimisation (with priority given to energy).

The 450 researchers and engineers from Inria and its partners who work in the research centre's 31 teams, the 100 research support staff members, the high-level equipment at their disposal (image walls, high-performance computing clusters, sensor networks), and the privileged relationships with prestigious industrial partners, all make Inria Saclay Île-de-France a key research centre in the local landscape and one that is oriented towards Europe and the world.

Context

Within the framework of a partnership
- collaboration between Inria teams INFINE (Saclay), EVA (Paris) - and also Inria team SOCRATE
- and with Nokia Bell Labs through the joint laboratory between Inria and Nokia Bell Labs

Assignment

The starting point for the thesis subject is “connectionless transmission” in the context of wireless communications (such as in Internet of Things, IoT), in some IoT scenarios, due to the massive number of IoT devices, the concept of well-controlled access has to be relaxed for efficiency (or simple feasibility). This is the case of for massive machine-type communications in cellular network [1], this often been the case in IoT networks in unlicensed networks (LoRa, Sigfox, B02.754-based...). This is the case also for some forms of vehicular communications (B02.11p based or in cellular [2]).

Main activities

The PhD thesis proposed research directions are:

- In this context, the initial subject will be to construct some next-generation access protocols, for IoT (or alternatively for vehicular networks).

One starting point are is the family of connectionless methods, where devices do not necessarily have to reserve resources prior to their transmission. This includes Non-Orthogonal Multiple Access (NOMA) [3], where multiple transmissions can “collide” but can still be recovered - with sophisticated multiple access protocols (MAC) that take physical layer/channel into account. One such example is the family of the Coded Slotted Aloha methods [4,5]. Another direction is represented by some vehicular communications where vehicles communicate directly which each other without necessarily going through the infrastructure. This is true also more generally in any wireless network where the control is relaxed (such as in unlicensed IoT networks like LoRa).

An observation is that in such distributed scenarios, explicit or implicit forms of signalling (with sensing, messaging,...), can be used for designing sophisticated protocols - including using machine learning techniques [6].

During the thesis, some of the following tools could be used: protocol/algorithmdesign (ensuring properties by construction), simulations (ns-2, ns-3, matlab,...) on detailed or simplified network models, mathematical modelling (stochastic geometry, etc...); machine-learning techniques or modelling as code-on-graphs [4,5], ...

Moreover, through cooperation with Inria Team SOCRATE, access methods and protocols could be further experimentally evaluated on the FIT CortexLab cognitive radio testbed (for which advanced physical layer and MAC building blocks are being implemented) or on IFIT-IoT-LAB, and might also be theoretically evaluated/compared considering optimal estimation and information theory bounds.


General Information

- Theme/Domain: Networks and Telecommunications
- System & Networks (BAP E)
- Town/city: PALAISEAU
- Inria Center: CRI Saclay - Île-de-France
- Starting date: 2018-10-01
- Duration of contract: 3 years
- Deadline to apply: 2018-09-31

Contacts

- Inria Team: INFINE-POST
- Recruiter: Adjih Cedric / cedric.adjih@inria.fr

About Inria

Inria, the French National Institute for computer science and applied mathematics, promotes “scientific excellence for technology transfer and society”: Graduates from the world’s top universities, Inria’s 2,700 employees rise to the challenges of digital sciences. With its open, agile model, Inria is able to explore original approaches with its partners in industry and academia and provide an efficient response to the multidisciplinary and application challenges of the digital transformation. Inria is the source of many innovations that add value and create jobs.

Conditions for application

Defence Security:
This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorization to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy:
As part of its diversity policy, all Inria positions are accessible to people with disabilities.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.
Benefits package
- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Flexible working hours
- Sports facilities

Remuneration
Monthly gross salary first 2 years: 1.982 euros
Monthly gross salary third year: 2.085 euros