described in this paper, using both the differential (in Prolog) in
The practical work of this internship is to implement
Our previous work on this subject is described in
Main activities
- combining both simulation algorithms with general criteria ensuring both correctness and maximum
- small numbers of molecules.
- by numerical integration (using implicit methods for stiff systems) but which is not correct for
- first-order approximation of the mean stochastic behavior which is much more efficient to compute
Equation (continuous-time Markov chain). The ordinary differential equation associated to a CRN is a
The stochastic simulation algorithm (SSA) provides a numerical integration of the chemical master
and can be interpreted at different levels of abstraction in a hierarchy of different dynamics:
- CRN has an hypergraph structure (i.e. a bipartite graph species/reactions labelled with rate functions)
- at a high-level of abstraction, without information on the kinetics of the reactions.
The 450 researchers and engineers from Inria and its partners
who work in the research centre's 31 teams, the 100 research
support staff members, the high-level equipment at their disposal
(image walls, high-performance computing clusters, sensor
networks), and the privileged relationships with prestigious
industrial partners, all make Inria Saclay Île-de-France a key
research centre in the local landscape and one that is oriented
towards Europe and the world.

The keys to success
We are seeking a highly talented and motivated
candidate not afraid by crossing disciplinary frontiers.

Instruction to apply
Send an e-mail with CV + cover letter to Mr François
Fages : francois.fages@inria.fr

About Inria
Inria, the French national research institute for
the digital sciences, promotes scientific
excellence and technology transfer to
maximise its impact. It employs 2,400 people.
Its 200 agile project teams, generally with
academic partners, involve more than 3,000
scientists in meeting the challenges of
computer science and mathematics, often at
the interface of other disciplines. Inria works
with many companies and has assisted in the
creation of over 160 startups. It strives to meet
the challenges of the digital transformation of
science, society and the economy.

About the research centre or Inria department
Located at the heart of the main national research and higher
education cluster, member of the Université Paris Saclay, a major
actor in the French Investments for the Future Programme (Idex,
LabEx, IRT, Equipex) and partner of the main establishments
present on the plateau, the centre is particularly active in three
major areas: data and knowledge; safety, security and reliability;
modelling, simulation and optimisation (with priority given to
energy).

The formalism of chemical reaction networks (CRNs) is used to model biological processes at the
cellular level. They explain complex phenotypes as the result of elementary molecular interactions. A
CRN has an hypergraph structure (i.e. a bipartite graph species/reactions labelled with rate functions)
and can be interpreted at different levels of abstraction in a hierarchy of different dynamic
differential, stochastic, Petri net or Boolean. The differential and stochastic simulations can make
quantitative predictions, while the Petri net and Boolean interpretation can serve analysis purposes
and can be interpreted at different levels of abstraction in terms of the kinetics of the reactions.
The stochastic simulation algorithm (SSA) provides a numerical integration of the chemical master
equation (continuous-time Markov chain). The ordinary differential equation associated to a CRN is a
first-order approximation of the mean stochastic behavior which is much more efficient to compute
by numerical integration (using implicit methods for stiff systems) but which is not correct for
small numbers of molecules.

Hybrid stochastic-differential simulations aim at providing automatic dynamic strategies for
combining both simulation algorithms with general criteria ensuring both correctness and maximum
efficiency.

Main activities
Our previous work on this subject is described in

Hui-Ju Chiang, François Fages, Jie-Hong Jiang,
Sylvain Soliman. Hybrid Simulations of
Heterogeneous Biochemical Models in SBML. ACM
[preprint]

The practical work of this internship is to implement
in Prolog in BIOCHAM-4 the dynamic strategy
described in this paper, using both the differential
integrator and the event mechanism as a mean to implement the SSA.

The research will consist in experimenting further the dynamic partitionning strategies described in the paper and evaluate them on the repository of models BioModels.

Theoretical work on this subject is possible concerning the correctnes criteria, as well as for instance the search of correctness criteria weaker than approximation in all time points.

The expected results aim to lead to both an international publication and an integration in the next release of BIOCHAM-4 to be routinely used for stochastic simulation of CRNs in BIOCHAM commands for sensitivity and robustness analysis, parameter search in high-dimension, artificial evolution of CRNs, and machine learning CRNs from data.

Skills
This subject requires common and basic knowledge in algorithmics, programming, and in numerical integration methods for ordinary differential equations.

Specific knowledge of the the Prolog programming language or of Computational Systems Biology will be a plus.

Benefits package
- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Flexible working hours
- Sports facilities

Remuneration
500 euros/month