
Main activities
Research activities.

Skills
Competences in probability, statistics, optimization, and mathematical modeling are essential. Solid programming and IT skills are necessary, along with strong communication abilities. Ideally, we are looking for two possible profiles:

The duration of this postdoc is 18 months.

Complexity [5].
Instead to train a complex ML model in the cloud, but then run a down-scaled version at the edge. To do this purpose, transfer learning techniques can be used to generate models with different time-space complexity [5].

The postdoc will investigate how the quality of the predictions can be traded off with latency through two different approaches. The first one is to cache at the edge ML answers to previous queries. Cached answers to “close enough” queries can then be provided to new queries. Local sensitive hashing is a possible way to evaluate the distance between queries [4]. The second approach is to train a complex ML model in the cloud, but then run a down-scaled version at the edge. To do this purpose, transfer learning techniques can be used to generate models with different time-space complexity [5].

The postdoc will investigate how the quality of the predictions can be traded off with latency through two different approaches. The first one is to cache at the edge ML answers to previous queries. Cached answers to “close enough” queries can then be provided to new queries. Local sensitive hashing is a possible way to evaluate the distance between queries [4]. The second approach is to train a complex ML model in the cloud, but then run a down-scaled version at the edge. To do this purpose, transfer learning techniques can be used to generate models with different time-space complexity [5].

The postdoc will investigate how the quality of the predictions can be traded off with latency through two different approaches. The first one is to cache at the edge ML answers to previous queries. Cached answers to “close enough” queries can then be provided to new queries. Local sensitive hashing is a possible way to evaluate the distance between queries [4]. The second approach is to train a complex ML model in the cloud, but then run a down-scaled version at the edge. To do this purpose, transfer learning techniques can be used to generate models with different time-space complexity [5].

The postdoc will investigate how the quality of the predictions can be traded off with latency through two different approaches. The first one is to cache at the edge ML answers to previous queries. Cached answers to “close enough” queries can then be provided to new queries. Local sensitive hashing is a possible way to evaluate the distance between queries [4]. The second approach is to train a complex ML model in the cloud, but then run a down-scaled version at the edge. To do this purpose, transfer learning techniques can be used to generate models with different time-space complexity [5].

The postdoc will investigate how the quality of the predictions can be traded off with latency through two different approaches. The first one is to cache at the edge ML answers to previous queries. Cached answers to “close enough” queries can then be provided to new queries. Local sensitive hashing is a possible way to evaluate the distance between queries [4]. The second approach is to train a complex ML model in the cloud, but then run a down-scaled version at the edge. To do this purpose, transfer learning techniques can be used to generate models with different time-space complexity [5].

The postdoc will investigate how the quality of the predictions can be traded off with latency through two different approaches. The first one is to cache at the edge ML answers to previous queries. Cached answers to “close enough” queries can then be provided to new queries. Local sensitive hashing is a possible way to evaluate the distance between queries [4]. The second approach is to train a complex ML model in the cloud, but then run a down-scaled version at the edge. To do this purpose, transfer learning techniques can be used to generate models with different time-space complexity [5].
experts on algorithms and competitive analysis
experts on machine learning

Benefits package
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Remuneration
Gross Salary: 2650 brutto per month