Job vacancy #2023-06755

PhD Position F/M PhD Position Computer Vision / Deep Learning: Video Generation

Contract type: Fixed-term contract
Level of qualifications required: Graduate degree or equivalent
Function: PhD Position

About the research centre or Inria department

The Inria Université Côte d'Azur center counts 36 research teams as well as 7 support departments. The center's staff (about 500 people including 320 Inria employees) is made up of scientists of different nationalities (250 foreigners of 50 nationalities), engineers, technicians and administrative staff. 1/3 of the staff are civil servants, the others are contractual agents. The majority of the center's research teams are located in Sophia Antipolis and Nice in the Alpes-Maritimes. Four teams are based in Montpellier and two teams are hosted in Bologna in Italy and Athens. The Center is a founding member of Université Côte d'Azur and partner of the I-site MUSE supported by the University of Montpellier.

Context

Inria, the French National Institute for computer science and applied mathematics, promotes “scientific excellence for technology transfer and society”. Graduates from the world's top universities, Inria's 2,700 employees rise to the challenges of digital sciences. With its open, agile model, Inria is able to explore original approaches with its partners in industry and academia and provide an efficient response to the multidisciplinary and application challenges of the digital transformation. Inria is the source of many innovations that add value and create jobs.

Team

The STARS research team combines advanced theory with cutting edge practice focusing on cognitive vision systems.

Team website: https://team.inria.fr/stars/

Assignment

The Inria STARS team is seeking for a Ph.D. researcher with strong background in computer vision, deep learning and machine learning.

The candidate is expected to conduct research related to generative models, including the development of computer vision algorithms for image and video generation.

Main activities

Despite remarkable progress in generative models, a pretrained network is currently limited in being able to generate only a single training subject / object within a single scenario the training data was pertained to.

This Ph.D. thesis aims at bringing video generation to the next level by proposing strategies to generalize the generation ability of generative models by disentangling appearance and motion in the latent space and further disentangling motion in primary directions, applicable to any subject in any setting. This carries the premise of allowing for more complex settings incorporating interaction of subjects / objects.

Context:

Generative adversarial networks (GANs) [1] have witnessed increased interest from academia and industry, due to exceptional capacity in generating highly realistic images [2, 3, 4, 5, 6, 7]. Videos signify more complex data, due to the additional temporal dimension. While some research works showed early results in video generation [8-11], there are many open questions in the field.

1. Model architecture

The thesis firstly will investigate, how to design model architecture for generator and discriminator in generative models. We will explore traditional model architectures such as CNN and RNN, as well as Transformer-based generators. Our objective will be to explore whether we can design a unified model.
architecture that generalizes over categories, such as human bodies and faces. We will study how to connect different architectures, in order to create such a general system for cross-category generation.

2. 3D-aware generation

Learning 3D-aware models from 2D data has become a popular research topic in image generation. In this thesis, we will go one step further in this direction to explore novel view synthesis in video generation. We intend to combine jointly state-of-the-art novel view synthesis techniques with video generation, aiming at creating 3D-aware video generation. Our idea is to explore implicit representation (e.g., NeRF), explicit representation (e.g., 3D representation), as well as hybrid (implicit-explicit) representation in video generation models. One objective will be to design an efficient and effective representation for novel-view synthesis in video generation.

3. Generalizability

Finally, we will aim to design a universal model which is able to generate videos across categories. Most of current models focus on generating single category (e.g., faces, sky...). Currently, there is no models, which are able to generate complex multi-category videos (e.g. Kinetics-600). We plan to increase the complexity of video generative models and design a large-scale video GAN. The objective is to study whether big generative models are able to capture the distribution of complex video datasets and create semantic meaningful videos.

Skills

Candidates must hold a Master degree or equivalent in Computer Science or a closely related discipline by the start date.

The candidate must be grounded in the basics of computer vision, have solid mathematical and programming skills.

Preferably in Python, OpenCV, deep learning framework Pytorch or Tensorflow.

The candidate must be committed to scientific research and strong publications.

Benefits package

- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) et al.
- Possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Contribution to mutual insurance (subject to conditions)

Remuneration

Gross Salary per month: 2082€ brut per month (year 1 & 2) and 2190€ brut/month (year 3)
General Information

- **Theme/Domain:** Vision, perception and multimedia interpretation
- **Town/city:** Sophia Antipolis
- **Inria Center:** Centre Inria d'Université Côte d'Azur
- **Starting date:** 2022-12-01
- **Duration of contract:** 3 years
- **Deadline to apply:** 2023-11-30

Contacts

- **Inria Team:** STARS
- **PhD Supervisor:** Dantcheva Antitza / antitza.dantcheva@inria.fr

About Inria

Inria is the French national research institute dedicated to digital science and technology. It employs 2,600 people. Its 200 agile project teams, generally run jointly with academic partners, include more than 3,500 scientists and engineers working to meet the challenges of digital technology, often at the interface with other disciplines. The Institute also employs numerous talents in over forty different professions. 900 research support staff contribute to the preparation and development of scientific and entrepreneurial projects that have a worldwide impact.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.

Instruction to apply

- **Defence Security:** This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorisation to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

- **Recruitment Policy:** As part of its diversity policy, all Inria positions are accessible to people with disabilities.