Offer #2023-06836

M2 Internship / Modeling and inversion of the cross-correlation of wave signals in terrestrial and solar seismology

Contract type: Internship agreement
Level of qualifications required: Master's or equivalent
Fonction: Internship Research
Level of experience: Recently graduated

Assignment

In terrestrial and solar seismology, surface oscillations are measured and used to infer the inner structures. These oscillations relate to the propagation of waves through the medium, propagation that depends on the inner physical properties such as density, bulk modulus, meridional circulation, etc. Therefore, observing the waves allows us to reconstruct the properties we cannot access. In the problems we consider, the waves originate from natural/stochastic events in the interior, and to extract information from the oscillations, we work with the cross-correlation of signals. The cross-correlation can be related to deterministic Green's functions which are solutions to wave equations, [2, 3, 4], giving us the relation between the physical properties and the observations.

Main activities

The first objective of this internship is the accurate simulation of cross-correlation data in realistic solar and terrestrial backgrounds. It involves the following tasks.

(1.a) The derivation of the mathematical relations between the cross correlations and the Green's function depending on the wave equation considered and on the assumption regarding the stochastic nature of the source. This task first includes a bibliographic review.

(1.b) The development and implementation of the numerical workflow in the open-source code hawen [1] developed in the team Makutu.

(1.c) The validation of the numerical simulations with respect to measurements.

Following completion of the first part, the inverse problem will be considered, that is, for passive imaging. The objective is here to reconstruct the internal structures of the medium from the measured oscillations. The reconstruction follows a nonlinear iterative minimization approach (e.g., inherited from Newton's method). Namely, the physical properties describing the system (such as the bulk modulus for the Earth, or the meridional circulation for the Sun) are iteratively updated to minimize a discrepancy criterion between the measurements and the numerical simulations. The following tasks are planned.

(2.a) Formulation of the inverse workflow, in particular with the writing of the adjoint-state method for gradient computation in the context of cross-correlation data.

(2.b) Implementation in the open-source code hawen and preliminary experiments on toy problems (with the scalar acoustic wave equation).

(2.c) Depending on the progress, the selection of misfit criterion and/or the choice of regularization will be investigated.

References

Skills

The applicant must have a solid background in applied mathematics, in particular in partial differential equations for wave propagation; knowledge in iterative optimization is also warmly recommended.
Numerical implementation will be part of the internship, within the open-source platform hawen, it is necessary that the applicant is familiar with coding, including parallel computer architecture to launch experiments. In addition, the applicant is expected to review scientific bibliography and write reports/documentation for its progress, hence a good level in English for all aspects of communications is required.

Benefits package

- Subsidized meals
- Partial reimbursement of public transport costs
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)

General Information

- **Theme/Domain**: Numerical schemes and simulations
 Scientific computing (BAP E)
- **Town/city**: Pau
- **Inria Center**: Centre Inria de l'université de Bordeaux
- **Starting date**: 2024-03-01
- **Duration of contract**: 6 months
- **Deadline to apply**: 2024-01-31

Contacts

- **Inria Team**: MAKUTU
- **Recruiter**: Faucher Florian / florian.faucher@inria.fr

About Inria

Inria is the French national research institute dedicated to digital science and technology. It employs 2,600 people. Its 200 agile project teams, generally run jointly with academic partners, include more than 3,500 scientists and engineers working to meet the challenges of digital technology, often at the interface with other disciplines. The Institute also employs numerous talents in over forty different professions. 900 research support staff contribute to the preparation and development of scientific and entrepreneurial projects that have a worldwide impact.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.

Instruction to apply

Please send your CV and cover letter to

Defence Security: This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorization to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy: As part of its diversity policy, all Inria positions are accessible to people with disabilities.