Offer #2023-06862

PhD Position F/M Guaranteed Fairness in Machine Learning

Contract type: Fixed-term contract

Level of qualifications required: Graduate degree or equivalent

Function: PhD Position

About the research centre or Inria department

The Inria University of Lille centre, created in 2008, employs 360 people including 305 scientists in 15 research teams. Recognised for its strong involvement in the socio-economic development of the Hauts-de-France region, the Inria University of Lille centre pursues a close relationship with large companies and SMEs. By promoting synergies between researchers and industrialists, Inria participates in the transfer of skills and expertise in digital technologies and provides access to the best European and international research for the benefit of innovation and companies, particularly in the region.

For more than 10 years, the Inria University of Lille centre has been located at the heart of Lille's university and scientific ecosystem, as well as at the heart of Frenchtech with a technology showroom based on Avenue de Bretagne in Lille, on the EuraTechnologies site of economic excellence dedicated to information and communication technologies (ICT).

Context

The selected PhD candidate will be based in Lille in the MAGNET team. The main objective of the team is to develop ethically acceptable machine learning algorithms focusing on fairness, privacy, and decentralized learning and to empower end users of artificial intelligence. The PhD candidate will be under the supervision of Michaël Perrot and Marc Tommasi.

Assignment

Machine learning is nowadays used in various applications, such as medical diagnosis and speech recognition. Its success stems from the performance of learned models, sometimes reaching human-level capabilities. However, deploying these models on a larger scale requires more than just accuracy, and it is imperative to consider fairness and trustworthiness when human lives are affected. For instance, a model used for medical diagnosis or an automated hiring process should not be biased against subgroups of the population. A plethora of approaches have been proposed in the scientific literature to overcome such issues by training models to maintain reasonable levels of accuracy while limiting discrimination of individuals or subgroups.

The effectiveness of these approaches is often assessed through empirical investigation on a limited range of datasets. Only a small number of methods offer theoretical guarantees of the fairness of the learned models, either in training or in generalization. In addition, these guarantees are not always in line with the settings where the models are applied. For example, they may solely consider stochastic decisions and disregard the need of deterministic predictions in practical applications. The aim of this PhD is to bridge this gap by proposing novel frameworks to learn fair models. For instance, potential avenues could include learning deterministic predictors from stochastic outcomes or introducing new algorithms with inherent fairness guarantees.

Fairness is not the sole constraint that should be enforced to obtain a trustworthy model. Other essential properties appear in the literature, among which privacy stands out as a very important requirement. The underlying idea is that the learned models should not leak information about the data that was used to train them. Although fairness and privacy have each been extensively examined separately, only recently have their interactions garnered more attention. A secondary goal of this thesis is to consider the interplay between these two notions, in particular in the context of the frameworks proposed to learn fair models.

Main activities

1. Review and follow the existing literature on Fair Machine Learning with a particular focus on well-founded methods.
2. Propose new fairness frameworks to bridge the gap between stochastic models and the derived deterministic decisions that are used in practice.
3. Study the problem of generalization in fair machine learning.
4. Investigate the interplay between fairness, privacy, and utility from a theoretical, empirical, and
algorithmic point of view.
5. Publish and present results in top machine learning conferences and journals.

Skills

A good candidate will have the following skills:

- A good command of English
- A strong background in mathematics
- A good knowledge of machine learning, statistics and algorithms
- Some experience with implementation and experimentation
- Some knowledge on fairness would be a plus

Please follow the instructions given in https://team.inria.fr/magnet/how-to-apply/ to set up your application file.

Benefits package

- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours)
 + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Remuneration

2082€ gross/month and 2190€ gross/month for the final year

General Information

- Theme/Domain: Optimization, machine learning and statistical methods
 Statistics (Big data) (BAP E)
- Town/city: Villeneuve d’Ascq
- Inria Center: Centre Inria de l’Université de Lille
- Starting date: 2024-10-01
- Duration of contract: 3 years
- Deadline to apply: 2024-01-31

Contacts

- Inria Team: MAGNET
- PhD Supervisor: Perrot Michael / michael.perrot@inria.fr

About Inria

Inria is the French national research institute dedicated to digital science and technology. It employs 2,600 people. Its 200 agile project teams, generally run jointly with academic partners, include more than 3,500 scientists and engineers working to meet the challenges of digital technology, often at the interface with other disciplines. The Institute also employs numerous talents in over forty different professions. 900 research support staff contribute to the preparation and development of scientific and entrepreneurial projects that have a worldwide impact.

The keys to success

A successful candidate will

- Collaborate in the team and where applicable with external researchers and engineers
- Organize work efficiently and make a good balance between the several priorities
- Report regularly

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.

Instruction to apply

Resume and cover letter

Defence Security:
This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorisation to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy:
As part of its diversity policy, all Inria positions are accessible to people with disabilities.