Thesis: Programming language migration for numerical modeling applications (M/F)

Type de contrat : CDD de la fonction publique
Niveau de diplôme exigé : Bac + 5 ou équivalent
Fonction : Doctorant
Niveau d’expérience souhaité : Jeune diplômé

A propos du centre ou de la direction fonctionnelle

The Inria Lille - Nord Europe Research Centre was founded in 2008 and employs a staff of 360, including 300 scientists working in sixteen research teams. Recognised for its outstanding contribution the socio-economic development of the Nord - Pas-de-Calais Region, the Inria Lille - Nord Europe Research Centre undertakes research in the field of computer science in collaboration with a range of academic, institutional and industrial partners.

The strategy of the Centre is to develop an internationally renowned centre of excellence with a significant impact on the City of Lille and its surrounding area. It works to achieve this by pursuing a range of ambitious research projects in such fields of computer science as the intelligence of data and adaptive software systems. Building on the synergies between research and industry, Inria is a major contributor to skills and technology transfer in the field of computer science.

Contexte et atouts du poste

Job environnements

Numerical modeling, or Computer simulation, is a primary tool in all fields of engineering and sciences (e.g. physics, astrophysics, climatology, chemistry, biology, automobiles, power plants, economics, …) to study at an arbitrary level of details the phenomena that occur in these domains, to improve the understanding of these phenomena, to propose new solutions, or to test these solutions more rapidly and at a lower cost than physical experimentation.

As the name implies, the domain of numerical modelling, owes much to abstraction and mental conceptualization. The efficiency of these applications relies on the ability of the engineers to correctly and efficiently implement the mathematical abstraction they have in mind. Unfortunately, for historical reasons, these applications are typically implemented in Fortran, a language conceived in the 50's that lacks high level abstraction concepts such as offered by Object-Oriented programming. The language itself is no longer taught in most universities, which makes it difficult to find skilled programmers. Migrating to an OOP language as C++, should isolate the implemented concepts one from the other, thus allowing to modify any part of the application without impacting the rest of it, which is rarely possible currently. This is a real problem that developers of Code Carmel (our subject application, see below) are experiencing currently.

GOAL: The thesis will provide tools to help developers migrating a legacy procedural FORTRAN application in an modern object oriented C/C++ one.

This thesis project is a collaboration between two research teams of University of Lille: RMod, a Software Engineering research team; and OMN, a Electronics and Electrotechnics research team.

Mission confiée

Research plan

Migrating tens or hundreds of thousands of lines of code from one programming language to another is already a significant challenge, but changing the programming paradigm from procedural to OOP, is even more difficult. It requires defining high level abstractions (i.e. classes) that might already be latent in the developers’ minds, but so tangled with unrelated instructions in the source code that they are difficult to identify.

The thesis will consider code migration at different levels of abstraction and complexity. The plan is to treat each level of abstraction independently from the other in successive phases of the thesis so that one abstract issue will not pollute another simpler one (“Migrate then Redesign” approach [BRPP10]).

- Syntax: We need to convert source code from one programming language syntax (Fortran) to another one (C/C++). This is not considered a difficulty for two languages like Fortran and C that are very close one to the other (scientific, statically-typed, procedural languages). Still, some issues may arise for example from the flexible use of arrays in Fortran [FLQZ97].

Conditions pour postuler

Instructions to apply

Candidates will be treated firstly with a complete file: CV + letter of motivation + one or more letters of recommendation + transcripts from previous years.

Sécurité défense :

Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.

Politique de recrutement :

Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
The PhD student will need to:

- spend some time with the OMN developers group to gain insider understanding of the application domain constraints and get acquainted with the Fortran programming language and the Code_Carmel application itself;
- conduct a literature survey on programming language migration, procedural to OO migration, and Fortran to C/C++ migration;
- propose solutions to the Code_Carmel migration problem and implement them as tools

Bibliography

Principales activités

The PhD student will need to:

- spend some time with the OMN developers group to gain insider understanding of the application domain constraints and get acquainted with the Fortran programming language and the Code_Carmel application itself;
- conduct a literature survey on programming language migration, procedural to OO migration, and Fortran to C/C++ migration;
- propose solutions to the Code_Carmel migration problem and implement them as tools.
within the Moose software analysis platform; write scientific article to disseminate the results of the research.

Compétences
Skills:
- Programming and particularly Object-Oriented programming
- Some mathematical background would help in understanding the constraints of the application domain
- Good English writing skills
- A preliminary knowledge of the Pharo programming language is not required but would be an advantage.

Avantages sociaux
Benefits
- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Sports facilities
- Flexible working hours

More information about Lille:
http://www.lille3000.eu/portail/
http://www.lillemetropole.fr/mel.html

Rémunération
Remunerating
The gross monthly salary is 1982€ for the 1st and 2nd year, 2085€ for the 3rd year.