2018-00411 - Post-doctoral - Development of Unbreakable Shared-Key Cryptography Protocols

Type de contrat : CDD de la fonction publique
Contrat renouvelable : Oui
Niveau de diplôme exigé : Thèse ou équivalent
Fonction : Post-Doctorant
Niveau d'expérience souhaité : Jeune diplômé

Contexte et atouts du poste

The TAMIS team at Inria Rennes - Bretagne Atlantique is among the largest security teams at Inria, including competences from hardware attacks to cryptography, and from vulnerability detection to malware analysis. This project is connected to the Chair of Cybersecurity in Threat Analysis financed by Région Bretagne.

Mission confiée

Shared-key cryptography consists of covert communications between two agents that possess a pre-shared key that is unknown to the attacker. The information-theoretical analysis of such protocols has been pioneered by Shannon in the 1940s and developed ever since. In particular, Shannon introduced the concept of perfect secrecy, that is, mathematical proof that a protocol does not leak any information about the message transmitted through the hidden channel. The one-time pad protocol has been proved to have perfect secrecy under reasonable conditions over the message and key, and has been used in many high-security applications. However, Shannon proved that for a protocol to have this property the message sent cannot be longer than the pre-shared key, and the key itself can be used only once.

Recently, a breakthrough in this field by our team has been the definition of max-equivocation, a generalization of perfect secrecy that exactly characterizes the maximum amount of possible secrecy that can be guaranteed by any protocol for given key and message distributions. Contrarily to perfect secrecy, it is possible to build shared-key cryptographic protocols that use a key significantly shorter than the message and where it is allowed to reuse the key an unlimited amount of times. We have developed such protocols and proven mathematically their unbreakableness and their optimality, following and expanding on Shannon's research. Additionally, we have created a new class of shared-key cryptosystems called Apollonian encoders, that are always guaranteed to achieve max-equivocation, and thus mathematically optimal on a very large class of entropy measures.

However, in practice communication protocols need to preserve additional interesting properties, like tampering detection, man-in-the-middle resistance, and authentication. To be integrated in an unbreakable communication protocol they need to not be relying on computational assumptions on the attacker, instead being resistant against an unconditional attacker assumed to have unlimited computational power.

Principales activités

Tampering detection against an unconditional attacker can be guaranteed using encrypted hashes. However, obtaining this without consuming the key is still an open problem. Similar techniques can be adapted to detect out-of-order transmission or packet drops by man-in-the-middle attackers.

Authentication against unconditional attacker can be obtained adapting Wegman-Carter authentication schemes, again considering the consequences to key consumption.

The candidate will work on developing a complete and unbreakable shared-key communication protocol, including mathematically proving that the protocol has the properties of interest and developing a reference implementation in the C language to allow for further development and standardization. A calendar of the proposed contributions follows:

6 months: state of the art of unconditioned cryptography; information-theoretical formalization of properties of interest (tampering detection, authentication, etc.)

12 months: preliminary results for unconditionally-secure communication protocol submitted to a security conference rated at least A (IEEE S&P, CSF, TrustCom, etc.); prototype protocol with properties of interest, proof of impossibility for properties of interest not included

Informations générales

- Thème/Domaine : Sécurité et confidentialité
- Ville : Rennes
- Centre Inria : CRI Rennes - Bretagne Atlantique
- Date de prise de fonction souhaitée : 01-10-2018
- Durée de contrat : 1 an, 6 mois
- Date limite pour postuler : 15-05-2018

Contacts

- Equipe Inria : TAMIS
- Recruteur : Biondi Fabrizio / fabrizio.biondi@inria.fr

L'essentiel pour réussir

Active mind, problem-solving attitude, professionalism

Conditions pour postuler

Please submit online : your resume, cover letter and letters of recommendation.

For further information, please contact Fabrizio Biondi (fabrizio.biondi@inria.fr)

Sécurité défense :

Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement :

Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
18 months: final version of the protocol published in security conference as above, reference implementation ready and published

Compétences
The candidate should feel comfortable working on research in a team environment. Good communication and programming skills are highly valued.

Knowledge of probability theory, information theory, and cryptography will be strongly considered.

Avantages sociaux
- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Flexible working hours

Rémunération
Monthly gross salary amounting to 2653 euros