A selected applicant is expected to work on at least one of two projects: a field study of the noticeability and consequences of slow changes to the input-output mappings of cursor control, performed over several weeks on participants' computers; or a characterization of the causes, consequences, and possible solutions to disrupting visual updates, (e.g. list updates, pop-up windows, etc.), that occur right before a user action and too quickly for motor interruption. Other projects can be

How do these changes impact everyday use of computing systems, both positively and negatively? How quickly do users detect them? How do they cope, at a behavioral level, with disrupting changes? And finally, how can we design reactive and adaptive systems that improve day-to-day interaction without disturbing the user?

Modern interactive systems are highly automated, multi-threaded, and connected: explicit user input is not the only cause for system responses. Interacting with these dynamic systems can be cognitively challenging as visual updates occur more and more independently of the user's actions (notifications [1], changes of layout [3], pop-up windows, etc.). Moreover, interactive systems also tend to unexpectedly adapt their behaviour based on interaction patterns and histories (suggestion lists in web browsers [2] or virtual keyboards, input-output mappings, etc.) regardless of user's habits.

These situations raise interesting and novel research questions about the consequences of control and visual changes on a daily use, and of the best ways to either use or avoid them in Graphical User Interface (GUI) design: When does a change become unexpected? Do people understand the causes of visual changes? How do these changes impact everyday use of computing systems, both positively and negatively? How quickly do users detect them? How do they cope, at a behavioral level, with disrupting changes? And finally, how can we design reactive and adaptive systems that improve day-to-day interaction without disturbing the user?

The selected applicant is expected to work on at least one of two projects: a field study of the noticeability and consequences of slow changes to the input-output mapping of cursor control, performed over several weeks on participants' computers; or a characterization of the causes, consequences, and possible solutions to disrupting visual updates, (e.g. list updates, pop-up windows, etc.), that occur right before a user action and too quickly for motor interruption. Other projects can be
discussed, including the selected applicant's own research projects.

Principales activités

Main activities:

- Design, run and analyze the results of controlled and/or field experiments
- Implement demonstrators and/or background applications that can be used to test these novel designs
- Design novel interaction techniques
- Write scientific papers

Compétences

Required skills:

- A PhD degree in Human-Computer Interaction or similar field
- A solid track record of publications in top-tier HCI venues
- Significant track record of design and implementation of interactive systems and GUIs
- Strong object-oriented programming skills
- Familiar with designing and analyzing evaluations of interactive systems, (knowledge of R is appreciated)
- Fluent English level

Avantages sociaux

Benefits

- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Sports facilities
- Flexible working hours

More informations about Lille:

http://www.lille3000.eu/portail/
http://www.lillemetropole.fr/mel.html

Rémunération

Remunerating

The gross monthly salary is 2653€