The candidate will be based in Lille and spend 6 months in Nancy.

Mission confiée

Assignments

Soft robotics is a new development in robotics where robots are made of soft materials, providing them properties of compliance which can have advantages in many applications. The current state of the art for building soft-robots is to 3D-print a mold in which the silicone will be casted, thus creating a soft structure of the desired geometry. The amount of control on the resulting material properties is limited to stiffness by varying the type of silicone. Meta-materials, like meso-structured materials, are materials having a specific micro-structured tile that may be periodic, providing them specific macroscopic mechanical properties. These properties would be interesting to use with soft robots by providing some specific properties such as the anisotropy of being stiffer in one direction.

In the project-team DEFROST, https://team.inria.fr/defrost, a software dedicated to real-time Finite Element Method (FEM) simulation of soft robots and their environment for design and control is being developed. This software is based on the open source framework SOFA and can handle all kinds of material geometries in interaction with their environment. However, when dealing with meso-structured materials, using a standard FEM model becomes prohibitively expensive, since the underlying mesh describing the material has to be extremely fine, the size of its elements being linked to the scale of the micro-structure. To be able to tackle such materials, it is necessary to use some homogenization method (a well known method in computational mechanics to simulate heterogeneous materials) to be able to find a macro-scale description of the material deformation taking the micro-structure into account. Those methods are typically based on the analytical or numerical evaluation of the behaviour of a micro-scale tile of the material to define a law of deformation at the macro-scale.

Bibliography:

- Software toolkit for modeling, simulation, and control of soft robots (2017), E. Coevoet et al.
- Microstructures to Control Elasticity in 3D Printing (2015), Christian Schumacher et al.
- Procedural Voronoi Foams for Additive Manufacturing (2016), Jonas Martinez et al.
Principales activités

Main activities

The candidate will develop a numerical framework to simulate the mechanical behaviour of microstructured materials in the open source framework SOFA: https://www.sofa-framework.org.

This tool will allow the candidate to design a proof of concept of meso-structured soft robots in the SOFA simulation environment and then to manufacture it.

If time remains, he may then investigate the design of optimal shapes of microstructures which have specific beneficial properties for soft robotics. Methods coming from the machine learning community may be used, or other methods the candidate may wish to use or develop.

The candidate will contribute to the team projects, publish in international journals and conferences.

Compétences

Skills

Knowledge in programming: C/C++, Python, etc...

Version: Git

Languages: English, French is a plus but not necessary

Avantages sociaux

Benefits

- Subsidised catering service
- Partially-reimbursed public transport
- Social security
- Paid leave
- Sports facilities
- Flexible working hours

More information about Lille:

http://www.lille3000.eu/portail/
http://www.lillemetropole.fr/mel.html

Rémunération

Remunerating

The gross monthly salary is 1982€ for the 1st and 2nd year, 2085€ for 3rd year.