Optimization for Large-scale Statistical Modeling

The recent success of machine learning techniques such as deep learning stems from a number of fundamental algorithmic improvements [11, 15]. Since most of the fundamental techniques underlying modern machine learning have their roots in the 80's, what really makes the difference, nowadays, is the availability of unprecedented amounts of training data which, coupled with the commoditization of general purpose GPUs, makes it possible to build models capable of achieving accuracies that in some cases surpass human ability [20].

A single computer equipped with powerful GPUs provides algorithmic simplicity and speed up to a given scale of training data and model size [17, 10, 5], today we have reached an operating point where both datasets and model sizes no longer fit the capacity of a single machine. Thus, a distributed implementation of training algorithms for modern statistical models, such as deep learning, becomes truly necessary.

In general, the success of deep learning as well as modern Bayesian non parametrics [6], stems from the application of stochastic optimization algorithms [2, 8, 14], that iteratively work on randomized subsets of the training data to determine model parameters that minimize a given loss function. Many learning problems can be expressed as (stochastic) optimization problems: given a dataset $X = \{x_1, x_2, \ldots, x_n\}$, the goal is to learn the parameters theta of a model with respect to an empirical loss function $L(\theta, X)$.

A first-order stochastic optimization algorithm achieves this by iteratively updating using a stochastic gradient of $L(\theta, X)$ computed at a randomly sampled x_i. This iterative procedure, called Stochastic Gradient Descent (SGD), produces a sequence of models, that is guaranteed to converge to a local optimum of the loss function [18]. Stochastic optimization can be seen as a unifying methodology to attack general learning problems at an unprecedented scale. It is therefore important to define novel algorithms and system implementations to distribute optimization algorithms across a cluster of machines that cooperate to minimize a given loss function. Despite several efforts in this direction [4, 16, 1], distributed optimization is still in its infancy, and more research is required to improve performance, scalability, and generality of optimization algorithms.

Apache Spark represents a natural candidate for large scale statistical modeling, due to its natural predisposition to process distributed data structures (which can hold model parameters as well as gradient updates). Nevertheless, Apache Spark is built on the Bulk Synchronous Parallel processing model [21], which currently restricts its application to synchronous optimization algorithms. The synchronization phase is time consuming also because of stragglers, so that asynchronous solutions have been proposed, where nodes may work on stale data and read-write race conditions may arise. Empirically, on single-node systems, these asynchronous algorithms have yielded order-of-magnitude improvements in performance (see e.g. [23]). While a significant performance improvement can be obtained, convergence is not guaranteed, and a faster computational throughput does not necessarily guarantee a faster convergence [25]. In particular, faster nodes can bias the convergence.

REFERENCES
Engineering, Computer Science, or a closely related area, preferably with a focus on networking or and publish in top venues. Candidates should have a Master's Degree (or equivalent) in Electrical

We are looking for candidates who are self-motivated and would like to conduct high quality research, introduced as in [25], it is not clear what is the optimal dependency graph.

Principales activités
Activity Research.

Compétences
We are looking for candidates who are self-motivated and would like to conduct high quality research, and publish in top venues. Candidates should have a Master's Degree (or equivalent) in Electrical Engineering, Computer Science, or a closely related area, preferably with a focus on networking or
communications. They are also expected to have very good analytical skills (Probability Theory, Algorithms, Optimization) and some background in the area of Machine Learning. Previous exposure to Spark is a significant plus. A good level of written and spoken English is mandatory (knowledge of French is not required). Finally, the selected candidate will be well organized and able to integrate and work well in groups. The position duration is normally 3 years, with a maximum duration of 4 years.

Avantages sociaux
- Restauration subventionnée
- Transports publics remboursés partiellement
- Sécurité sociale
- Congés payés
- Aménagement du temps de travail
- Installations sportives

Rémunération
Durée: 36 mois
Localisation: Sophia Antipolis, France
Rémunération: 1982€ brut mensuel (année 1 & 2) et 2085€ brut mensuel (année 3)