by conducting controlled user studies.

character embodiment in virtual worlds (i.e., the degree to which users consider the avatar to be their

representation in the virtual world), and their influence on the collaboration between remote users

evaluate this impact on two principal dimensions, namely their influence on the sense of

work will consist in assessing the influence of such physio-synchronised avatars. In particular, we will

metaphors (e.g. cardiac coherence mapped to a colored animation surrounding the avatar). However,

A@er concentrating on the real-time recording and processing, the second part of this postdoc will

Objective

The objective of this postdoc is to explore approaches that will better reflect the current state of

users by adapting their avatar's visual appearance to their own physiological signals. In this project,

we will first concentrate on the realtime recording and processing of physiological signals. These

signals may include, but are not limited to, breathing, heart rate, galvanic skin response, facial muscle

activity (electromyography) or ocular information (eye movements, blinks, pupillometry). While

adapting the behaviour of non-player characters to the users' physiological signals can influence their

activity (electromyography) or ocular information (eye movements, blinks, pupillometry). While

immersion [Waltemate et al. 2018], as well as to display onto these avatars accurate motions of users

through the use of lightweight motion capture systems, and even to display believable facial

expressions. On the other hand, avatars still lack from some of the more subtle information regarding

the users' psycho-physiological state, and therefore do not generally accurately inform us about their

current real state. For example, an avatar may appear as peaceful whereas its user is very stressed or

anxious, or appear rested a@er a strenuous effort while its user might be breathless. Therefore, new

techniques are today necessary to enable avatars to more accurately represent the physiological state

of its user.

Principal activités

After concentrating on the real-time recording and processing, the second part of this postdoc will

explore how to coherently map these modalities to the visual appearance of the avatar. This can be

done by mimicking realistic behaviours (e.g. breathing [Bernadette et al. 2019], or by proposing visual

metaphors (e.g. cardiac coherence mapped to a colored animation surrounding the avatar). However,

as these signals might have different levels of influence on the user's experience, a large part of the

recording and processing of physiological signals. More specifically, the position is framed in the context of the national 4-year Inria Project Lab - IPL AVATAR which aims at delivering the next generation of virtual selves, or “avatars”, in digital worlds. In particular, the IPL AVATAR wants to push further the limits of perception and interaction through our avatars to obtain avatars that are better embodied and more interactive. Such objectives will notably be attained by designing novel paradigms for interacting with and representing avatars.

ConteXte et atouts du poste

Context

Avatars are virtual anthropomorphic characters whose goals are to represent humans in virtual

worlds. Such avatars are frequently used in personal applications such as video games, or

collaborative scenarios [Pan and Steed 2017, Piumsomboon et al. 2018]. They allow their users to be

to virtually present in a personal or shared 3D synthetic world.

Due to the massive dissemination of consumer-grade Head-Mounted Displays, avatars have become a

major requirement in immersive applications, leading to major improvements in their visual quality. On

one hand, it is now possible to personalize the avatar representation to the user, which impacts

immersion [Waltz et al. 2018], as well as to display onto these avatars accurate motions of users

through the use of lightweight motion capture systems, and even to display believable facial

expressions. On the other hand, avatars still lack from some of the more subtle information regarding

the users' psycho-physiological state, and therefore do not generally accurately inform us about their

current real state. For example, an avatar may appear as peaceful whereas its user is very stressed or

anxious, or appear rested after a strenuous effort while its user might be breathless. Therefore, new

techniques are today necessary to enable avatars to more accurately represent the physiological state

of its user.

Compétences

The candidate should be comfortable with as much following items as possible:

- Graphics programming and tools such as Unity3D
- VR setups (e.g. HMD)
- Character animation
- Physiological sensors recording and processing
- Evaluation methods
- Controlled users studies
- Immersion, presence, embodiment

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Possibility of teleworking (after 6 months of employment) and flexible organization of
 working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)

Informations générales

- Thème/Domaine : Interaction et visualisation
- Ville : Talence
- Centre Inria : CRI Bordeaux - Sud-Ouest
- Date de prise de poste souhaitée : 2020-04-01
- Durée de contrat : 1 an, 8 mois
- Date limite pour postuler : 2020-04-30

Contacts

- Equipe Inria : POTOIC
- Recruteur : Hachet Martin / Martin.Hachet@inria.fr

A propos d'Inria

Inria is the Institute national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 200 équipes-projets agiles, en général communiquées avec des partenaires académiques, impliquent plus de 3500 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers d'agents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 180 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

Bibliography

Social, cultural and sports events and activities
Access to vocational training
Social security coverage

Rémunération
2653€ / month (before taxes)

Consignes pour postuler

Thank you to send :
- CV
- Cover letter
- Support letters (mandatory)
- List of publication

Sécurité défense :
Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.

Attention : Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.