Temporal action detection in untrimmed videos (long video containing several actions) is an important task for monitoring patients, building robots for assisting and other healthcare applications. Although several approaches, including the Deep Convolutional Networks (CNNs), have significantly improved performance on action classification, they still struggle to achieve precise spatio-temporal action localization in untrimmed videos. Temporal action detection aims at not only recognizing the action category but also detecting the beginning and ending of an action instance. Most temporal action detection frameworks consist of two parts: action boundary proposition and action classification.

The first task, "action boundary proposal", consists in determining the temporal boundaries of each action instance. Existing work as [10, 14, 13, 8, 6] have low precision on this detection of temporal boundaries. These algorithms meet difficulties for detecting long complex actions (e.g. cooking). Besides, they usually fail to detect the actions where the duration varies significantly, from a couple of seconds to few minutes. On the other hand, to obtain high localization accuracy, a large number of window scales and small sliding steps would be needed, which can lead to dramatically increased computational cost. Hence, we lack of an efficient and robust algorithm for localizing the actions.

The second task is "action classification" which is to classify accurately a video with action labels. Recently we have designed high performing model [1, 2], which can get more than 90% accuracy on several public datasets as NTU-RGB+D [9]. However, these models fail to achieve high performance in real life settings datasets. Errors come with handling real life challenges, such as high environment diversity, multi-view settings, low awareness of camera, high duration variation, etc. In addition, long action recognition with composite actions (e.g. making coffee pour grain and pour water) and fine-grained actions with different objects (e.g. drinking from a cup or from a bottle) are still unsolved tasks. Hence, we still need robust algorithms for action classification in real life settings.

The algorithm that we want to develop will be deployed in real life settings, to help senior people and their relatives to feel safer at home since video analytics intends to detect potentially dangerous situations and to report critical situations to caregivers.

In this PhD work, we would like to go beyond Deep Learning by taking advantage of CNN based network for action classification and embedded them into a temporal action detection framework for action localization to address complex human daily living datasets. The challenge is to design a method that can process an untrimmed video in both online and offline manner and so to detect automatically the beginning and end of the targeted actions. A typical system can include 2 sub-networks: generating temporal proposals and classifying proposed candidates. The former is to produce a set of class-agnostic temporal regions that potentially reflect actions of interest, while the latter is to determine whether each candidate actually corresponds to an action and what class it belongs to. CNNs, RNN could be used in this system.

The evaluation of proposed frameworks and models should be performed on public live videos and datasets which contain daily activities like AVA [5], THUMOS [4], PKU-MMD [7], DAHLIA [12] and Smarthome.

Principales activités

Calendar:
1st year: Study the limitations of existing activity recognition and temporal detection algorithms. Depending on the targeted activities, data collection might need to be carried out. Propose an original algorithm that addresses current limitations on inference. Evaluate the proposed algorithm on benchmarking datasets. Write a paper.

2nd year: Investigation of feasibility/appropriateness of the framework in practical situation Propose an algorithm to address model learning task in semi-supervised settings, write a paper and write PhD manuscript.

3rd year: Optimize proposed algorithm for real-world scenarios. Write a paper and PhD Manuscript.

Prerequisites:
Strong background in C++/Python programming languages, Knowledge on the following topics is a plus:
Machine learning,
Deep Neural Networks frameworks, Probabilistic Graphical Models, Computer Vision, and
Optimization techniques (Stochastic gradient descent, Message-passing).

Avantages

• Subsidized meals
• Partial reimbursement of public transport costs
• Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
• Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
• Professional equipment available (videoconferencing, loan of computer equipment, etc.)
• Social, cultural and sports events and activities
• Access to vocational training
• Social security coverage

Rémunération

Duration: 36 months
Location: Sophia Antipolis, France
Gross Salary per month: 1982 € brut per month (year 1 & 2) and 2085€ brut/month (year 3)

Informations générales

• Thème/Domaine : Vision, perception et interprétation multimedia
 Ingénierie technique et de production (TIC) (BAP E)
• Ville : Sophia Antipolis
• Centre Inria : CRI Sophia Antipolis - Méditerranée
• Date de prise de fonction souhaitée : 2019-09-01
• Durée de contrat : 3 ans
• Date limite pour postuler : 2019-05-05

Contacts
Equipe Inria : STARS
Directeur de thèse :
Brémond François / francois.bremond@inria.fr

A propos d’Inria

Inria, l’institut national de recherche dédié aux sciences du numérique, promeut l’excellence scientifique et le transfert pour avoir le plus grand impact. Il emploie 2400 personnes. Ses 200 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3000 scientifiques pour relever les défis des sciences informatiques et mathématiques, souvent à l’interface d’autres disciplines. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 160 start-up. L’institut s’efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l’économie.

Consignes pour postuler

Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.

Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.

Attention : Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d’autres canaux n’est pas garanti.