2019-01542 - PhD Position F/M Deep supervision of the vocal tract shape for articulatory synthesis of speech [S]

Type de contrat : CDD de la fonction publique
Niveau de diplôme exigé : Bac + 5 ou équivalent
Fonction : Doctorant

Mission confiée

Context

The production of speech requires a signal source, i.e. the vibration of vocal folds or a noise of turbulence in the vocal tract, and a system of resonant cavities, i.e. the vocal tract. Speech articulators (jaw, tongue, lips, larynx, soft palate and epiglottis) are used to modify the shape of the vocal tract, and therefore the acoustic properties including the resonances of the vocal tract. When learning speech or a second language, speakers learn how to mobilize and control articulators to produce intelligible speech.

Articulatory synthesis mimics this process by using as inputs the deformations of the vocal tract, and the parameters of vocal fold control over time. The interest of articulatory synthesis is to explain the articulatory origin of phonetic contrasts, enable changing the movement of articulators (or even block one of them), modify the control parameters of vocal folds, enable a realistic adaptation to a new speaker by modifying the size and shape of the articulators, and finally give access to physical quantities (e.g. pressure) in the vocal tract for example) without requiring the introduction of sensors in the vocal tract.

Compared to other approaches to synthesis that offer a high level of quality, the strenght of articulatory synthesis is above all to control the entire process of speech production.

The generation of the geometric shape of the vocal tract at each time point of the synthesis is most often based on the use of an articulatory model [1,2] that gives the shape of the tract with a small number of parameters. Each of the parameters corresponds to a deformation mode of the articulator considered, and the tongue being the most deformable articulator requires at least 6 six parameters. The articulatory model is constructed from about 100 static MRI images of the vocal tract.

Principales activités

Project description

Recently we have been equipped with a two-dimensional real-time MRI acquisition system (at 55 images per second) for the vocal tract as part of a collaboration with the IADI laboratory (INSERM U1254) at Nancy hospital, and a database of several hours of speech for a speaker.

The quality of these images of the mid-sagittal shape of the vocal tract is very goot and it is therefore possible to track the contour of the articulators automatically [4,5,6]. We want to track each of the articulators independently of the others because speech involves complex compensatory and coordinating gestures that would be hidden if the vocal tract is processed in one piece[7].

The most important part of the work will be devoted to controlling the shape of the vocal tract. The idea is to develop a deep learning approach to determine the position of the articulators according to the phonemes to be articulated. The constraint is to be able to identify the role of each articulator in sufficient detail so as to be able to control its impact on the overall shape of the vocal tract, and to study coordination and compensation strategies between the articulators.

The abduction and adduction gestures of the vocal folds can be recorded using electrophotoglottography [8] and, as for the articulatory parameters, it will be possible to learn them according to the sequence of phonemes to be articulated. These two data streams will be fed into digital acoustic simulations [9] to verify the quality of the speech produced, and to study the articulatory factors of expressive speech.

References

Compétences

Required qualifications

MSc in computer science, signal processing or applied mathematics.

Language

French or English.

Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Rémunération
Monthly salary after taxes: around 1596,05€ for 1st and 2nd year. 1678,99€ for 3rd year. (medical insurance included).

Informations générales
- **Ville**: Villers-lès-Nancy
- **Centre Inria**: CRI Nancy - Grand Est
- **Date de prise de fonction souhaitée**: 2019-09-01
- **Durée de contrat**: 3 ans
- **Date limite pour postuler**: 2019-05-01

Contacts
- **Equipe Inria**: MULTISPEECH
- **Directeur de thèse**: Laprie Yves / yves.laprie@loria.fr

A propos d'Inria
Inria, l'institut national de recherche dédié aux sciences du numérique, promeut l'excellence scientifique et le transfert pour avoir le plus grand impact. Il emploie 2400 personnes. Ses 200 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3000 scientifiques pour relever les défis des sciences informatiques et mathématiques, souvent à l'interface d'autres disciplines. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 160 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

Application deadline

May 1st, 2018 (Midnight Paris time)

How to apply

Upload your file on jobs.inria.fr in a single pdf or zip file, and send it as well by email to yves.laprie@loria.fr.
Your file should contain the following documents:

Your CV.
A cover/motivation letter describing your interest in this topic.
A short (max one page) description of your Master thesis (or equivalent) or of the work in progress if not yet completed.
Your degree certificates and transcripts for Bachelor and Master (or the last 5 years).
Master thesis (or equivalent) if it is already completed and publications if any (it is not expected that you have any). Only the web links to these documents are preferable, if possible.

In addition, one recommendation letter from the person who supervises(d) your Master thesis (or research project or internship) should be sent directly by his/her author to jane.smith@inria.fr.

Applications are to be sent as soon as possible.

Consignes pour postuler

Sécurité défense:
Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.

Politique de recrutement:
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.