A propos du centre ou de la direction fonctionnelle

Contexte et atouts du poste

The engineer will work closely with Dr. Adnane Boukhayma and Prof. Frankan Mulot. The work will be conducted at Inria Rennes in the MIMETIC research team. This position takes part in the KIMBA Cloud project, a collaboration between Inria Rennes and startups Moventity and Quortex. The goal of this project is to address the challenge of musculoskeletal disorders from a smartphone. The manufacturing industry is the sector most affected by musculoskeletal disorders, in particular due to repetitive gestures and frequent load transport. These companies do not necessarily have internal ergonomics resources and cannot always invest in technological tools. Given simply a video of the worker in his workstation, a Deep Learning-based algorithm will estimate the 3D positions of the person's joints. The musculoskeletal risks will be subsequently analyzed automatically from these 3D postures. The role of Inria in this project is to research and develop a robust solution for 3D human pose estimation from color images captured in the wild, particularly in the industrial context.

Mission confiée

3D human pose estimation is one of the fundamental problems and most active research areas in computer vision with various applications in many fields such as action recognition, human-machine interfaces, special effects and telepresence. Despite recent advances in the scientific community, monocular 3D human pose estimation in natural images remains far from being resolved.

The recent surge of Deep Learning allowed a substantial improvement in the performance of state-of-the-art methods on 2D and 3D human pose estimation. In particular, a family of 3D pose estimators cast the problem as lifting from 2D to 3D predictions (e.g., [1, 2, 3, 4]). They generally outperform the end-to-end counterparts since they benefit from the remarkable current performances of 2D pose estimators, and due in part to the lack of massive training image data with ground-truth 3D pose annotations. We propose to follow this direction at first, reproduce state-of-the-art results and explore further improvements and new approaches to allow in particular better generalization to natural images and challenging capture conditions, reducing dependencies to 2D predictions, and using incremental learning to update the learned models with new learning examples on the fly.

Within this role, the engineer will lead the development of a deep learning based method for 3D human pose estimation from a single color image. He/she could also participate in the research part of the project. The results of these works are expected to be published in top tier computer vision conferences such as CVPR, ICCV, ECCV, etc.

We propose the following course of action:

- 2D to 3D pose estimation lifting:
 Developing a Deep Learning method allowing to obtain 3D poses from 2D poses. This task notably involves generating a simulated 2D/3D learning set from 3D motion capture. The challenges are to be able to manage erroneous 2D skeletons in the event of large occlusions, and the multitude of possible 3D points of view.
- Combining end-to-end 3D pose estimation and 2D-3D lifting:
 Developing a Deep Learning method for 3D human pose estimation that can learn simultaneously from image/3D, image/2D and 2D/3D annotation pairs. Test cases include industrial postures and environments, as well as severe capture conditions.
- Incremental learning:
 Developing a method that allows the learning models to adapt in an incremental way to new learning data without forgetting their existing knowledge. The objective is to avoid relaunching a total learning of the Deep Learning network with each new example that we would like to add.

Principales activités

The engineer will be tasked with:

- Developing a program allowing 3D human pose estimation from single color images in the wild. The solution will be tested on industrial use cases with possible occlusions and extreme capture situations.
- Depending on the progress of the project, developing an incremental learning solution allowing the aforementioned 3D pose estimation model to learn from new example cases without the need to retrain on all data, and without any loss in the models performance.

Informations générales

- Thème/Domaine : Vision, perception et interprétation multimédia
- Ville : Rennes
- Centre Inria : CRI Rennes - Bretagne Atlantique
- Date de prise de fonction souhaitée : 2020-09-01
- Durée de contrat : 1 an, 6 mois
- Date limite pour postuler : 2020-05-31

Contacts

- Equipe Inria : MIMETIC
- Recruteur : adnane.boukhayma@inria.fr

A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 200 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3500 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde.

Inria travaille avec de nombreuses entreprises qui accompagnent la création de plus de 180 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

We are looking for excellent candidates, preferably with a solid background in mathematics or computer science and good coding skills, who can work independently and who are also keen to collaborate with other researchers.

Consignes pour postuler

Please submit online : your resume, cover letter and letters of recommendation eventually.

Sécurité défense :

Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-125 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'attribution d'accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.

Politique de recrutement :

Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.

Attention : Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
In practice, these tasks imply:

- Participating in the research discussions and algorithms design.
- Reading and implementing research papers.
- Reproducing state-of-the-art results.
- Implementing the ideas proposed by the research collaborators.
- Creating training and testing datasets.
- Participating in the publication of the research results.

Compétences

- Candidates should preferably have a MSc or PhD in computer science, applied mathematics, computer vision, computer graphics or machine learning.
- The ability to read, understand and implement research papers and reproduce scientific results.
- Good coding skills (Python, C, C++).
- Proficiency in deep learning frameworks such as Pytorch is a plus.

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs

Rémunération

Monthly gross salary from 2562 euros according to diploma and experience