Chordae structure and dynamic behaviour of the mitral valve

Methodology and Segmentation

The mitral valve of the heart ensures one-way flow of oxygenated blood from the left atrium to the left ventricle. However, many pathologies damage the valve anatomy, producing undesired backflow, or regurgitation, decreasing cardiac efficiency and potentially leading to heart failure if left untreated. Such cases could be treated by surgical repair of the valve. However, it is technically difficult and outcomes are highly dependent upon the experience of the surgeon. A solution could be to use computer-based simulations to predict the result of the surgical procedures. The mitral valve is composed of leaflets that are maintained by chordae during peak systole. The Magrit team has previously worked on extracting the chordae in the context of the associate team CURATIVE (https://team.inria.fr/curative). The topic of this PhD is to continue this research with the aim to develop a functional model of the mitral valve that is physically valid and replicates real measurements.

Mission confiée

State-of-the-art mitral valve simulation researches either focus on one unique data that has been manually segmented or acquired in special-vivo conditions [Rom17, Khai9] or focus on simplified chordae sets [Feng18]. On the contrary, our aim is to be able to perform simulation with a realistic model build from images of any patient.

Previous works in the team [Pan19a, Pan19b] have allowed to automatically extract chordae from CT scanner images represented as a graph of centerlines, including bifurcations. However, some chordae may be missing or incorrectly detected which may lead to an incorrect physical behavior of the valve. In addition, there is a dense set of small chordae near the leaflets which cannot be properly detected from images. One of the main goal of the PhD will be to develop a simplified model of the valve from patient data which does not consider too small chordae and gives an equivalent functional result.

To reach this objective, improvements are expected both on the segmentation and on the mechanical side:

- For the segmentation process, focus will be made on enforcing structural constraints on the chordae arborescence and on identification of parts (bifurcations or centerlines) that are less reliable than others. This reliability could be included in the global optimization process that is currently used to refine the arborescence from the initial graph. As the shape of the chordae is not perfect elliptical cylinders, we also intend to investigate the use of convolutional-network techniques to learn how chordae shapes differ from a mathematical cylinder and improve their detection.
- Based on typical chordae arborescence, mechanical simulations will be realized in order to understand how the upper dense part of the arborescence could be simplified to give a similar mechanical behavior. The PhD student will first use an existing mechanical framework [Ham11] for simulation and improvements on that aspect could take place with P. Hammer (BioRobotic Labs) in the context of the team CURATIVE. Besides the definition of strategies for simplification, one of the challenges will also consist in defining when the simulation reaches a steady state and in comparing two simulations. Indeed, considering the average motion is not appropriate since the motion of the leaflet may be local.
- Strategies for refining the simplified tree that is in good agreement with the image and physically coherent, should be defined. In particular, the extracted structures could have some slack (leading to errors in the valve modeling). Ways to reduce this slack while giving an equivalent mechanical behavior will be developed.

The student will evaluate the proposed functional models with different typical mitral valve states: healthy pathology and after surgical repair. The challenge will be to set properly the mechanical parameters, the boundary conditions, the resolution numerical method and its convergence so that the model is robust and predictive.

It must be noted that the leaflets and the chordae are required for mechanical simulation. However, the detection of the leaflets in closed images of the valve seems to currently not accessible by automatic means. During the PhD, semi-automatic tools for helping the extraction of the leaflet will be designed. The idea is not to write a software but rather to use existing tools and to design specific steps dedicated to valve segmentation. Technical challenges in segmenting the valve at the closed state include detecting the “Coaptation” surface. They are other irregularities in the leaflet surface such as other wrinkles and surface indentations due to chordae pulling down the structure. In order to detect them, thickness measurement from a Laplace-based method [Yez03] will be used to infer connections between leaflets and chordae.

- Bibliography:
 - [Feng18] Liuyang Feng, Nan Qi, Hao Gao, Wei Sun, Mariano Vazquez, Boyce E. Griffith, Xiaoyu Luo, On the chordae structure and dynamic behaviour of the mitral valve, IMA

Informations générales

- Thème/Domaine: Vision, perception et interprétation multimedia
- Calcul Scientifique (BAP E)
- Ville: Villers lès Nancy
- Centre Inria: CRI Nancy - Grand Est
- Date de prise de fonction souhaitée: 2020-10-01
- Durée de contrat: 3 ans
- Date limite pour postuler: 2020-04-30

Contacts

- Equipe Inria: MAGRIT
- Directeur de thèse: Berger Marie-odile / marie-odile.berger@inria.fr

A propos d’Inria

Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 200 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3500 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir les projets scientifiques ou entrepreneuriaux qui impactent le monde.

Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 180 start-up. L’institut s’efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l’économie.

L’essentiel pour réussir

Application deadline

May 1st, 2018
(Midnight Paris time)

How to apply

Upload your file on jobs.inria.fr in a single pdf or zip file, and send it as well by email to marie-odile.berger@inria.fr, and pierrefrederic.villard@loria.fr

Your file should contain the following documents:

- Your CV.
- A cover/motivation letter describing your interest in this topic.
- A short (max one page)
Compétences

Required qualifications: Msc in applied mathematics or computer science

We are looking for a highly motivated student with strong inclination for interdisciplinary research. Candidates must have a solid background both in mathematics (modeling, optimization, numerical simulations), image processing (segmentation), and some knowledge in mechanics. Some acquaintance with medical imaging techniques will be appreciated.

Language: French or English

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Leave 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Rémunération

Salary: 1982€ gross/month for 1st and 2nd year; 2085€ gross/month for 3rd year.

Monthly salary after taxes: around 1596,05€ for 1st and 2nd year; 1678,99€ for 3rd year. (medical insurance included).

In addition, one recommendation letter from the person who supervises(d) your Master thesis (or research project or internship) should be sent directly by his/her author to marie-odile.berger@inria.fr.

Applications are to be sent as soon as possible.

Consignes pour postuler

Sécurité défense :
Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.