PhD Position F/M Adoption dynamics in social networks for green mobility

Le descriptif de l'offre ci-dessous est en Anglais

Type de contrat : CDD
Niveau de diplôme exigé : Bac + 5 ou équivalent
Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle

The Centre Inria de l'Université de Grenoble groups together almost 600 people in 22 research teams and 7 research support departments.

Staff is present on three campuses in Grenoble, in close collaboration with other research and higher education institutions (Université Grenoble Alpes, CNRS, CEA, INRAE, ...), but also with key economic players in the area.

The Centre Inria de l'Université Grenoble Alpes is active in the fields of high-performance computing, verification and embedded systems, modeling of the environment at multiple levels, and data science and artificial intelligence. The center is a top-level scientific institute with an extensive network of international collaborations in Europe and the rest of the world.

Contexte et atouts du poste

This work will be carried out in the DANCE team (Dynamics and Control of Networks), a research team of GIPSA-Lab research center in Grenoble, France. The team's research concerns modeling, estimation and control of network systems, with a broad spectrum of theoretical and applied topics including traffic networks, intelligent vehicles, social dynamics, and analysis of large-scale complex networks.

The thesis is part of the FORBAC project funded by the French government within the PEPR “DATA TECHNOLOGY for MOBILITY IN THE TERRITORIES”. The activities of the PhD thesis will be hosted at the Grenoble INRIA Center.

Mission confiée

Scientific scope and objectives: Tomorrow's mobility is being reinvented by the increased usage of less polluting modes of transport, the diffusion of shared means of transportation, and the provision of information to users who must be actors of their mobility. The various mobility or communication technologies require time to be adopted and the full spectrum of their consequences must be understood. In order to analyze the long-term effects of a technology on overall mobility, models with different time scales must be integrated: on the one hand, the daily mobility that can be captured by macroscopic models such, and on the other hand, the gradual adoption of the technology, whose dynamics can be accelerated by the incentives from policy makers.

Adoption dynamics for green or shared means of transportation are also challenging because they involve, together with human choice, physical dynamics and constraints. A new technology, such as hydrogen vehicles, requires a significant investment in terms of infrastructure. How to achieve an optimal deployment in time and space of the infrastructure in view of the uncertainty of the adoption of the technology? In the face of the recurrent discussion about free public transport, how can the overall system be impacted in a sustainable way?

Coupling technology adoption models (such as the Bass model) with traffic models is a crucial research issue for understanding the complex systems of multi-modal transport. Taking into account the specificities of suburban areas is also a fundamental issue. The adoption of a technology is also strongly dependent on space and on various socio-economic factors. We will study adoption dynamics that involve various components: an adoption model, possibly game-theoretic in nature in order to readily account for incentives; a social network, where dynamics of social influence takes place; and the dynamics of infrastructural changes and investments. These dynamics involve time-scales in the order of months (or longer) and spatial scales from the neighborhood to the whole country.

Our contribution will have strong focus on the network aspects (transportation networks and, where relevant, social networks), with due consideration to their structure: we will for instance investigate
when and where incentives are most effective to deploy (Bini 2022). Considering the PEPR focus on large scales, suitable averaging techniques need to be used for the model to be tailored to the right geographical scale: candidate techniques developed by the team include continuation (Nikitin 2022) and graphon-based models (Vizuete 2020).

Literature


Principales activités

Main activities : Perform research under the supervision of the advisors.

Additional activities :

- In collaboration with project partners, contribute to define the mathematical models and, as needed, develop and use simulation setups.
- Write internal and external reports, as well as scientific articles for peer review
- Present the works’ progress to team partners, project partners, and general scientific audiences.

Compétences

The candidate will have a MS degree in Automatic Control, Applied Mathematics, or related disciplines.

Languages : English and French

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours)
- Possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Rémunération

- Gross salary: 2082 euros monthly (1st & 2nd year) ; 2190 euros 3rd year

Informations générales

- Thème/Domaine : Optimisation et contrôle de systèmes dynamiques
- Ville : Montbonnot
- Centre Inria : Centre Inria de l'Université Grenoble Alpes
- Date de prise de fonction souhaitée : 2024-01-01
- Durée de contrat : 3 ans
Contacts

Équipe Inria : DANCE
Directeur de thèse : Frasca Paolo / paolo.frasca@inria.fr

A propos d'Inria

Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L’institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

The candidate will have a MS degree in Automatic Control, Applied Mathematics, or related disciplines.
The candidate should be open to engage in some interdisciplinary work, including professional and scientific interactions with civil engineers, economists and behavioral scientists.

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler

Sécurité défense :
Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret nº2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.