Offre n°2024-07823

Post-Doctoral Research Visit F/M Cooperative Inference Strategies

Le descriptif de l'offre ci-dessous est en Anglais

Type de contrat : CDD
Niveau de diplôme exigé : Thèse ou équivalent
Fonction : Post-Doctorant

A propos du centre ou de la direction fonctionnelle

The Inria Centre at Université Côte d'Azur includes 37 research teams and 8 support services. The centre's staff (about 500 people) is made up of scientists of different nationalities, engineers, technicians and administrative staff. The teams are mainly located on the university campuses of Sophia Antipolis and Nice as well as Montpellier, in close collaboration with research and higher education laboratories and establishments (Université Côte d'Azur, CNRS, INRAE, INSERM ...), but also with the regiona economic players.

With a presence in the fields of computational neuroscience and biology, data science and modeling, software engineering and certification, as well as collaborative robotics, the Inria Centre at Université Côte d'Azur is a major player in terms of scientific excellence through its results and collaborations at both European and international levels.

Contexte et atouts du poste

This PostDos is funded by the challenge Inria-Nokia Bell Labs: LearnNet (Learning Networks)

Researchers involved
At Inria: Giovanni Neglia, Chuan Xu, Aurélien Bellet
At Nokia: Fabio Pianese, Calvin Chen, Tianzhu Zhang

Mission confiée

Introduction

An increasing number of applications rely on complex inference tasks based on machine learning (ML). Currently, two options exist to run such tasks: either served directly by the end device (e.g., smartphones, IoT equipment, smart vehicles) or offloaded to a remote cloud. Both options may be unsatisfactory for many applications: local models may have inadequate accuracy, while the cloud may fail to meet delay constraints. In [SSCN+24], researchers from the Inria NEO and Nokia AIRL teams presented the novel idea of inference delivery networks (IDNs), networks of computing nodes that coordinate to satisfy ML inference requests achieving the best trade-off between latency and accuracy. IDNs bridge the dichotomy between device and cloud execution by integrating inference delivery at the various tiers of the infrastructure continuum (access, edge, regional data center, cloud). Nodes with heterogeneous capabilities can store a set of monolithic machine-learning models with different computational/memory requirements and different accuracy and inference requests that can be forwarded to other nodes if the local answer is not considered accurate enough.

Research goal

Given an AI model's placement in an IDN, we will study inference delivery strategies to be implemented at each node in this task. For example, a simple inference delivery strategy is to provide the inference from the local AI model if this seems to be accurate enough or to forward the input to a more accurate model at a different node if the inference quality improvement (e.g., in terms of accuracy) compensates for the additional delay or resource consumption. Besides this serve-locally-or-forward policy, we will investigate more complex inference delivery strategies, which may allow inferences from models at different clients to be combined. To this purpose, we will rely on ensemble learning approaches [MSE2] like bagging [Bre96] or boosting [Sch99], adapting them to IDN distinct characteristics. For example, in an IDN, models may or may not be trained jointly, may be trained on different datasets, and have different architectures, ruling out some ensemble learning techniques. Moreover, queries to remote models incur a cost, which leads to prefer ensemble learning techniques that do not require joint evaluation of all available models.
In an IDN, models could be jointly trained on local datasets using federated learning algorithms [KMA+21]. We will study how the selected inference delivery strategy may require changes to such algorithms to consider the statistical heterogeneity induced by the delivery strategy itself. For example, nodes with more sophisticated models will receive inference requests for difficult samples from nodes with simpler and less accurate models, leading to a change in the data distribution seen at inference with respect to that of the local dataset. Some preliminary results about the training for early-exit networks in this context are in [KSR+24].

References


Principales activités

Research.

If the selected candidate is interested, he/she may be involved in students’ supervision (master and PhD level) and teaching activities.

Compétences

Candidates must hold a Ph.D. in Applied Mathematics, Computer Science or a closely related discipline. Candidates must also show evidence of research productivity (e.g. papers, patents, presentations, etc.) at the highest level.

We prefer candidates who have strong mathematical background (on optimization, statistical learning or privacy) and in general are keen on using mathematics to model real problems and get insights. The candidate should also be knowledgeable on machine learning and have good programming skills. Previous experiences with PyTorch or TensorFlow is a plus.

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Rémunération

Gross Salary: 2788 € per month

Informations générales

- Thème/Domaine : Optimisation, apprentissage et méthodes statistiques
- Système & réseaux (BAP E)
- Ville : Sophia Antipolis
- Centre Inria : Centre Inria d’Université Côte d’Azur
- Date de prise de fonction souhaitée : 2024-10-01
- Durée de contrat : 1 an, 6 mois
- Date limite pour postuler : 2024-07-25

Contacts
A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler

Sécurité défense :
Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.