
Offre n°2024-08353

PhD Position F/M Robust Federated Learning
Le descriptif de l’offre ci-dessous est en Anglais

Type de contrat : CDD

Niveau de diplôme exigé : Bac + 5 ou équivalent

Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle
The Inria center at Université Côte d'Azur includes 42 research teams and 9 support services. The center’s
staff (about 500 people) is made up of scientists of different nationalities, engineers, technicians and
administrative staff. The teams are mainly located on the university campuses of Sophia Antipolis and
Nice as well as Montpellier, in close collaboration with research and higher education laboratories and
establishments (Université Côte d'Azur, CNRS, INRAE, INSERM ...), but also with the regional economic
players.

With a presence in the fields of computational neuroscience and biology, data science and modeling,
software engineering and certification, as well as collaborative robotics, the Inria Centre at Université
Côte d'Azur  is a major player in terms of scientific excellence through its results and collaborations at
both European and international levels.

Contexte et atouts du poste
The position is part of a new Marie Curie Training Network called FINALITY, in which Inria joins forces
with top universities and industries, including IMDEA, KTH, TU Delft, the University of Avignon (Project
Leader), the Cyprus Institute, Nokia, Telefonica, Ericsson, Orange, and others. The PhD students will have
opportunities for internships with other academic and industry partners and will be able to participate in
thematic summer schools and workshops organized by the project.

Only people who have spent less than one year in France in the last 3 years are eligible.

The candidate will receive a monthly living allowance of about €2,735, a mobility allowance of €414, and, if
applicable, a family allowance of €458 (gross amounts).

Mission confiée
Federated Learning (FL) empowers a multitude of IoT devices, including mobile phones and sensors, to
collaboratively train a global machine learning model while retaining their data locally [1,2]. A prominent
example of FL in action is Google's Gboard, which uses a FL-trained model to predict subsequent user
inputs on smartphones [3].

Two primary challenges arise during the training phase of FL [4]:

Data Privacy: Ensuring user data remains confidential. Even though the data is kept locally by the
devices, it has been shown that an honest-but-curious server can still reconstruct data samples [5,6],
sensitive attributes [7,8], and the local model [9] of a targeted device. In addition, the server can conduct
membership inference attacks [10] to identify whether a data sample is involved in the training or
source inference attacks to determine which device stores a given data sample [11].

Security Against Malicious Participants: Ensuring the learning process is not derailed by harmful actors.
Recent research has demonstrated that, in the absence of protective measures, a malicious agent can
deteriorate the model performance by simply flipping the labels [12] and/or the sign of the gradient [13]
and even inject backdoors into the model [14] (backdoors are hidden vulnerabilities, which can be
exploited under certain conditions predefined by the attacker, like some specific inputs).

Differentially private algorithms [15] have been proposed to tackle the challenges of protecting user
privacy. These algorithms work by clipping the gradients and adding noise to them before the
transmission, ensuring that minor alterations in a user's training dataset will not be discernible to
potential adversaries [16,17,18,19,20]. By leveraging the differentially private mechanisms, [19] shows that
adversaries are unable to deduce the exact local information of vehicles for the applications such as
Uber. Furthermore, [20] demonstrates that the quality of data reconstruction attack is significantly
reduced when training a convolutional neural network on CIFAR-10 dataset.

To enhance system security against adversarial threats, Byzantine resilient mechanisms are
implemented on the server side. These algorithms are designed to identify and mitigate potentially
detrimental actions or inputs from users, ensuring that even if some components act maliciously or
erratically, the overall system remains functional and secure [21,22,23,24]. Experiments [21] reveal that
integrating these Byzantine resilient mechanisms sustains neural network accuracy at 90.7%, even when
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10% of the agents maliciously flip the labels on the MNIST dataset. In contrast, without such protection,
the accuracy of the neural network drops significantly to 77.3%.

Integrating differential privacy with Byzantine resilience presents a notable challenge. Recent research
suggests that when these two security measures are combined in their current forms, the effectiveness
of the resulting algorithm disproportionately depends on the number of parameters in the machine
learning model (d) [25]. In particular, it requires either the batch size to grow linearly with the square
root of d, or the proportion of the malicious agents in the system to decrease with rate inversely
proportional to the square root of d. For a realistic model such as ResNet-50 (with around 25 million
parameters), the batch size should be larger than 5000, which is clearly impractical. To tackle this
problem, novel Byzantine resilient algorithms have been recently proposed [26,27]. However, these
algorithms encounter significant computational complexity, with a rate of at least d3 in each
communication round. Hence, there is a pressing need for innovative methods that can seamlessly
integrate differential privacy and Byzantine resilience with low computational complexity to train
practical neural networks.

Project objective
The goal of this PhD is to propose novel FL algorithms to effectively tackle these two mutually linked
challenges. In particular, we want to explore the potentialities of compression for FL training, as these
techniques can highly reduce the model dimension d, which may provide a solution for a computation-
efficient private and secure FL system.

Compression techniques were initially introduced to alleviate communication costs in distributed
training processes, where only a proportion of model parameters are sent from the device to the server
in each communication round [28,29,30]. The primary objective of compression design is to ensure a
communication-efficient machine learning/FL system, by providing model parameters selection rules at
the device side which optimize the trained model performance under a given communication budget.
[31,32] combined Byzantine resilient methods with compression, to ensure a communication-efficient
secure FL system. However, in these studies, even though devices transmit compressed models to the
server, Byzantines resilient methods still operate on the full models of dimension d. Consequently,
adopting their solutions to build a private and secure FL system still requires high computation load.

The goal of this PhD is to investigate the impact of compression strategies on the trade-offs among
privacy, robustness, computational efficiency, and model performance, with the aim of designing novel
compression techniques for a computationally efficient, private, and secure federated learning system.
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Principales activités
Research

Compétences
 We are looking for a candidate with coding experience in Python and good analytical skills.

 We expect the candidate to be fluent in English.

Avantages
Subsidized meals
Partial reimbursement of public transport costs
Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours)
+ possibility of exceptional leave (sick children, moving home, etc.)
Possibility of teleworking and flexible organization of working hours
Professional equipment available (videoconferencing, loan of computer equipment, etc.)
Social, cultural and sports events and activities
Access to vocational training
Contribution to mutual insurance (subject to conditions)

Rémunération
The candidate will receive a monthly living allowance of about €2,735, a mobility allowance of €414, and, if
applicable, a family allowance of €458 (gross amounts)

Informations générales
Thème/Domaine : Optimisation, apprentissage et méthodes statistiques 
Système & réseaux (BAP E)
Ville : Sophia Antipolis
Centre Inria : Centre Inria d'Université Côte d'Azur
Date de prise de fonction souhaitée : 2025-03-01
Durée de contrat : 3 ans
Date limite pour postuler : 2025-01-31

Contacts
Équipe Inria : NEO
Directeur de thèse : 
Neglia Giovanni / Giovanni.Neglia@inria.fr

A propos d'Inria
Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie
2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires
académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à
l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de
métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et
grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de
nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de
répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des
candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler
Applications must be submitted online on the Inria website. Collecting applications by other channels is
not guaranteed.

Sécurité défense : 
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le
décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST).
L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable,
tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un
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poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.

Politique de recrutement : 
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation
de handicap.
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