Job vacancy #2023-06403

PhD Position F/M Signal processing-based on the squared eigenfunctions of the Schrödinger operator. Application to EEG signals

Contract type: Fixed-term contract
Level of qualifications required: Graduate degree or equivalent

About the research centre or Inria department

The Inria Saclay-Île-de-France Research Centre was established in 2008. It has developed as part of the Saclay site in partnership with Paris-Saclay University and with the Institut Polytechnique de Paris.

The centre has 39 project teams, 27 of which operate jointly with Paris-Saclay University and the Institut Polytechnique de Paris; Its activities occupy over 600 people, scientists and research and innovation support staff, including 44 different nationalities.

Context

Biomedical signals are usually characterized by the presence of peaks that provide direct or indirect information on the physiological and metabolic state. Usually, these pulse-shaped signals require preprocessing such as denoising and artifact removals. Further analysis and processing might be required in some specific situations to allow for the extraction of pertinent information from these signals. Despite the fact that the literature abounds with signal processing methods, there are still challenges that need to be overcome and further improvements can be achieved for processing pulse-shaped signals. In this context, a quantum-based signal processing method has been proposed in 1. This method called the semiclassical signal analysis (SCSA) method decomposes the signal into a set of functions given by the squared eigenfunctions of the Schrödinger operator associated with its negative eigenvalues 1. Thus, and unlike traditional signal decomposition tools, the SCSA expresses the signal through a set of functions that are signal dependent; that is, these functions are not fixed and known in advance but are computed by solving the spectral problem of the Schrödinger operator whose potential is the signal to be analyzed. Accordingly, these eigenfunctions capture more details about the signal and its morphological variations 2. The SCSA has been successfully applied in many applications for signal representation, denoising, post-processing, and feature extraction. For example, it has been used for arterial blood pressure waveform analysis in 3,4 and for magnetic resonance spectroscopy (MRS) denoising 5, for MRS water suppression6, and for MRS lipid suppression7. It has been also used for feature extraction in epileptic seizure detection 8 and for the characterization of PPG signals and blood pressure signals for non-invasive estimation of central pressure and arterial stiffness respectively 9. Recent work on the characterization of EEG signals for epileptic seizure detection and seizure onset zone location has shown promising results 10,11.

Assignment

The objective of this research project is to study the mathematical properties of the SCSA and compare the approach qualitatively and quantitatively to state-of-the-art methods such as Wavelets and empirical mode decomposition methods. A parallel between quantum and signal processing properties will be studied. In particular, the student will use some quantum properties of the operator to propose new criteria for the selection of the semi-classical parameter a key design parameter of the method for both denoising and signal characterization. Numerical properties of the algorithm will be also analyzed, with a focus on the optimization of the current codes. Applications to biomedical signals will be investigated with a particular focus on EEG signals for epileptic seizure detection and prediction and for monitoring the mental health of athletes.

Skills

We seek a student with strong background and expertise in signal processing and mathematics. Knowledge in biomedical signals and learning algorithms is a plus.

Benefits package

- Subsidized meals
- Partial reimbursement of public transport costs
Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Remuneration
- 1st and 2nd year: 2051€ gross/month
- 3rd year: 2158€ gross/month

General Information
- Town/city: Palaiseau
- Inria Center: Centre Inria de Saclay
- Starting date: 2023-10-01
- Duration of contract: 3 years
- Deadline to apply: 2026-09-30

Contacts
- Inria Team: AT-SAC
- PhD Supervisor: Laleg Kirati Taous / Taous-Meriem.Laleg@inria.fr

About Inria
Inria is the French national research institute dedicated to digital science and technology. It employs 2,600 people. Its 200 agile project teams, generally run jointly with academic partners, include more than 3,500 scientists and engineers working to meet the challenges of digital technology, often at the interface with other disciplines. The Institute also employs numerous talents in over forty different professions. 900 research support staff contribute to the preparation and development of scientific and entrepreneurial projects that have a worldwide impact.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.

Instruction to apply
Defence Security:
This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorisation to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy:
As part of its diversity policy, all Inria positions are accessible to people with disabilities.