Job vacancy #2023-06685

Development and Evaluation of a Virtual Crowd Platform for Augmented Reality Applications

Contract type: Internship

Level of qualifications required: Graduate degree or equivalent

Fonction: Internship Research

About the research centre or Inria department

The Inria Centre at Rennes University is one of Inria's eight centres and has more than thirty research teams. The Inria Centre is a major and recognized player in the field of digital sciences. It is at the heart of a rich R&D and innovation ecosystem: highly innovative PMEs, large industrial groups, competitiveness clusters, research and higher education players, laboratories of excellence, technological research institute, etc.

Assignment

Subject

Interactions with other persons are ubiquitous in our daily lives, ranging from social interactions in personal and professional situations, to physical interactions, e.g. in sports. For this reason, researchers have striven for years to understand, model, and replicature humans to include them in digital replicas, with impressive advancements made in topics such as capturing, rendering, animating, etc. Realistic virtual humans are therefore now common in entertainment applications (e.g., movies, videogames), but have also demonstrated their value in other fields such as architecture, training, education, etc.

Recently, realistic virtual humans have also started to be more and more used in immersive Virtual Reality applications in order to study human behaviours. Because of the complexity of studying human behaviours in controlled real situations, being able to immerse users in virtual replicas populated with interactive virtual humans provides a novel paradigm to explore such questions. For instance, VR was used to compare pairwise interactions between real and virtual situations [Olivier et al. 2018], to explore when pedestrians choose to go through or around groups of characters [Bruneau et al. 2015], to explore the relation between gaze activity and collision avoidance during pedestrian interactions [Berton et al. 2019, 2020], or to explore exit choices during evacuations [Ríos and Pelechano 2020]. It was even recently used to crowd datasets by immersing only one single user, successively embodying several virtual agents by him/herself [Yin et al. 2022].

However, immersive VR applications can have limitations in the level of realism and variety of scenarios that can be explored, because of the time and budget constraints required to develop a variety of scenarios. Instead, Augmented Reality could provide an interesting alternative to automatically deploy out-of-the-lab and in-the-wild applications directly in real situations. For instance, one could imagine using Augmented Reality to plan the organization of real events and evaluate the effects of specific arrangements on various crowd-related characteristics (e.g., evacuation, bottlenecks, flows), by automatically populating real places with virtual characters. Nevertheless, including virtual characters in AR applications, in particular involving large virtual crowds, is still challenging. It requires to include them in appropriate locations, depending on the topology of the environment that varies depending on the real scene. This becomes even more difficult when these characters are animated, as they should act according to the environment, and potentially interact with real humans that will be also present. While some attempts have been made at simulating virtual crowds in AR [Akaydin et al. 2013, 2014; Hurst and Geraerts 2019], these have only targeted extremely simple setups, and not complex real-world situations, or for specific studies (e.g., pedestrian interaction with a virtual car in AR [Maruhn et al. 2020]).

The goal of this internship is therefore to explore novel applications for using virtual characters in AR applications. The first objective will consist in developing a virtual crowd framework to facilitate the inclusion of large numbers of virtual characters in augmented reality applications. The framework will be based on some of the tools already developed in the Virtus team for crowd simulation, character animation, and immersed virtual crowds, such as CrowdMP and Umans. Then, dedicated applications will be developed to evaluate this framework, starting with an AR application for visualizing various crowd densities in real scenarios using virtual characters.

Main activities

This internship therefore involves:

- Developing a framework for simulation virtual crowds in AR applications
• Developing a number of simple scenarios of increasing complexity involving virtual crowds in AR (e.g., static characters only, dynamic characters reacting to the environment, etc.), based on a Vive Elite XR or on lighter devices.
• Evaluating the framework and how users perceive virtual crowds in AR situations.

References

Skills

Requirements for candidacy

• Master in Computer Sciences, with proficiency in C++ or C#
• General background in Virtual Reality or Computer Graphics
• Experience with Unreal or Unity would be beneficial

General Information

• Theme/Domain: Interaction and visualization
• Software Experimental platforms (BAP E)
• Town/city: Rennes
• Inria Center: Centre Inria de l'Université de Rennes
• Starting date: 2024-02-01
• Duration of contract: 6 months
• Deadline to apply: 2024-02-28

Contacts

• Inria Team: VIRTUS
• Recruiter: Hoyet Ludovic / ludovic.hoyet@inria.fr

About Inria

Inria is the French national research institute dedicated to digital science and technology. It employs
2,600 people. Its 200 agile project teams, generally run jointly with academic partners, include more than 3,500 scientists and engineers working to meet the challenges of digital technology, often at the interface with other disciplines. The Institute also employs numerous talents in over forty different professions. 900 research support staff contribute to the preparation and development of scientific and entrepreneurial projects that have a worldwide impact.

Warning: you must enter your e-mail address in order to save your application to Inria. Applications must be submitted online on the Inria website. Processing of applications sent from other channels is not guaranteed.

Instruction to apply

Please submit online: your resume, cover letter and letters of recommendation eventually

Contact: ludovic.hoyet@inria.fr

Defence Security:
This position is likely to be situated in a restricted area (ZRR), as defined in Decree No. 2011-1425 relating to the protection of national scientific and technical potential (PPST). Authorisation to enter an area is granted by the director of the unit, following a favourable Ministerial decision, as defined in the decree of 3 July 2012 relating to the PPST. An unfavourable Ministerial decision in respect of a position situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy:
As part of its diversity policy, all Inria positions are accessible to people with disabilities.