2020-02964 - PhD Position F/M AI-guided assessment of IoT security

Type de contrat : CDD
Niveau de diplôme exigé : Bac + 5 ou équivalent
Fonction : Doctorant

Mission confiée

Contexte

In last years, Internet-of-Things became a reality with numerous protocols, platforms and devices [8] being developed and used to support the growing deployment of IoT. The goal of this PhD is to automatically prevent the intrusions by identifying IoT devices, extracting relevant information about their vulnerabilities and assess the overall risk. We can thus summarize the control of a Z-Wave home installation in a silent manner [2].

Therefore, security is paramount of importance. In last decade, many IoT architectures have been proposed, such as the reference model IoT-A [3], including security modules. However, as highlighted before, security cannot be guaranteed without failure or by-design and this is all the more true with evolving ecosystems such as IoT, with now the emerging trend of using fog-based architecture rather than well-established cloud models. Therefore, vulnerabilities related to IoT are now documented [14] and can be exploited. Looking at the last years, major attacks including the Mirai botnet, Cold in Finland, Brickerbot and the botnet barrage [3] are proofs of the real security concerns that are brought.

There is thus a clear need to automate the security of IoT that can adapt in real-time to the evolving IoT ecosystem (devices appearing, disappearing, configuration changes, updates...). All changes may introduce new threats. Actually, evaluating the security of single device is vital but most of all, considering a set of devices interacting together in their IoT environment is paramount of importance as complex interactions open the way to complex and stealthy attacks. Due to the large number of possible device types, different deployment scenarios and vulnerabilities, manual inspection is impracticable. There is a need for automatically evaluating the security of an IoT system in its globality (rather than just individual devices).

Principales activités

Project description

The goal of this PhD is to automatically prevent the intrusions by identifying IoT devices, extract relevant information about their vulnerabilities and assess the overall risk. We can thus summarize the global process as follows: (1) identification of the IoT deployment through topology discovery and fingerprinting, (2) mapping vulnerability to atomic elements of the IoT deployment based on public documentations, (3) evaluation of the overall risk.

While there is room for improvement in step (1), we will mainly rely on state-of-the-art technique around topology discovery and fingerprinting. There exist dedicated techniques for IoT [3]. The PhD candidate will thus focus on the three other steps that can be grouped into two main tasks:

1. Consolidation of public vulnerability descriptions with information retrieved in step (1). Actually, most of Cyber-Threat Intelligence databases such as those provided by MITRE...
2. Refine and map the previously built database onto a real deployment of IoT and then derive an overall assessment score of its components.

This work will be achieved in the context of the Inria Project SCUBA that aims at developing a full framework for automated assessment and security of IoT. The PhD candidate will thus have the opportunity to be part of a whole team working on IoT security (mainly 2 researchers, 2 engineers) and to use our dedicated IoT platform including numerous devices from different brands and using different protocols for validation purposes.

- Bibliography:
 1. Manos Antonakakis et al., Understanding the Mirai Botnet, USENIX Security, 2017
 2. L. Rouch et al., A Universal Controller to Take Over a 2-Wave Network, Black Hat Europe, 2017
 5. BF Van Dongen et al., The prom framework: A new era in process mining tool support, ICATPN 2005

Compétences

Required qualifications

- Required qualification: PhD diploma in computer science
- Good expertise in networking, security, machine learning, logic and stochastic modeling
- Knowledge in NLP method will be appreciated
- Computer skills familiar with Linux, Scala/Python programming

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Rémunération

Monthly salary after taxes : around 1596,05€ for 1st and 2nd year. 1678,99€ for 3rd year. (medical insurance included).