2023-06544 - PhD Position F/M Hardware-guided compression & fine-tuning of Transformer-based models

Type de contrat : CDD
Niveau de diplôme exigé : Bac + 5 ou équivalent
Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle

The Inria Rennes - Bretagne Atlantique Centre is one of Inria's eight centres and has more than thirty research teams. The Inria Center is a major and recognized player in the field of digital sciences. It is at the heart of a rich R&D and innovation ecosystem: highly innovative PME, large industrial groups, competitiveness clusters, research and higher education players, laboratories of excellence, technological research institute, etc.

Contexte et atouts du poste

Supervisors: Silviu-Ioan Filip (1) and Olivier Sentieys (1)
(1) Univ Rennes, Inria
Place: Campus de Beaulieu, Rennes, France
Contacts: olivier.sentieys@inria.fr, silviu.filip@inria.fr

Mission confiée

This PhD Thesis will be funded through the HOLIGRAIL project.

Principales activités

Transformer-based large language models (LLMs) have been getting significant attention recently with the arrival of networks such as ChatGPT and GPT-4. While they show impressive potential in a variety of tasks (notably in vision and natural language processing), most modern Transformer-based architectures are nevertheless characterized by significant storage (with up to hundreds of billions of parameters and hundreds of GB of required memory/disk space), computational and energy costs, making it challenging to fine-tune, deploy, and use them in many practical settings without a powerful hardware infrastructure. For instance, even state-of-the-art compressed model families, such as LLaMA [6], require at least 7B parameters (LLaMA-7B) and at least 3.5GB of storage (i.e., when using 4-bit integer quantization).

The PhD candidate will be tasked with investigating extreme compression methods for Transformer-based models, combining pruning and quantization methodologies (such as post-training quantization methods [2] and quantiation-aware training [3]). We will look at hybrid format mixed precision approaches (e.g.,

Informations générales

- Thème/Domaine : Architecture, langages et compilation
- Système & réseaux (BAP E)
- Ville : Rennes
- Centre Inria : Centre Inria de l'Université de Rennes
- Date de prise de fonction souhaitée : 2023-10-01
- Durée de contrat : 3 ans
- Date limite pour postuler : 2023-09-05

Contacts

- Équipe Inria : TARAN
- Directeur de thèse : Sentieys Olivier / Olivier.Sentieys@irisa.fr

A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 200 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3500 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 180 start-up. L’institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l’économie.

Attention : Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler

Please submit online : your resume, cover letter and letters of recommendation eventually.

For more information, please contact olivier.sentieys@inria.fr.

Sécurité défense : Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR),
mixing integer and floating-point data [1]), **taking hardware constraints into account** (e.g. available compute units and supported formats and memory). The goal is to efficiently **explore the large design space of available quantization formats and propose compressed models that are optimized for low latency and energy consumption.** This will entail extending low precision simulation tools that we have been developing in our team (mptorch, built on top of PyTorch [4,5]), and also working towards FPGA/ASIC hardware accelerator prototypes for small to medium sized Transformer-based models that will be developed with other members in the HOLIGRAIL project.

Context: The successful candidate will be a member of the TARAN team, based in the Inria Research centre at Rennes University and IRISA Lab. in Rennes, France. The thesis is part of the upcoming PEPR HOLIGRAIL project, part of the larger PEPR programme in Artificial Intelligence. It brings together researchers working on machine learning, computer arithmetic, hardware acceleration and compiler optimization for embedded systems and deep learning applications from University of Rennes, Inria, CEA List, INSA Lyon and Grenoble-INP. HOLIGRAIL is a large and competitive project that will fund more than 20 people ranging from PhD students to postdoctoral fellows.

References:

Compétences

When: The desired starting date is October 1st 2023 or as soon as possible after.

Who: The successful candidate should be highly motivated and creative. The position requires a strong background in computer arithmetic, computer architecture, with knowledge of Deep Learning models (ideally LLMs) and techniques. Strong proficiency in Python with knowledge of popular deep learning frameworks such as PyTorch or TensorFlow is also required.

Application: Informal inquiries are strongly encouraged and the interested candidates can contact us for additional details and information. Applications are accepted until the positions are filled. The formal application should be sent by email to Silviu Filip (silviu.filip@inria.fr) and Olivier Sentieys (olivier.sentieys@inria.fr) and it should include:

- motivation letter
- CV
- transcripts for the courses undertaken in the last two years of study
- references and recommendation letters
- links to publications or MSc thesis if relevant
- contact information of two references (title, name, organization, e-mail)

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Possibility of teleworking (90 days per year) and flexible organization of working hours
- Partial payment of insurance costs
Rémunération

monthly gross salary amounting to 2082 euros for the first and second years and 2190 euros for the third year