Offre n°2023-06744

PhD Position F/M Privacy on-demand and Security preserving Federated Generative Networks or Models

Le descriptif de l'offre ci-dessous est en Anglais

Type de contrat : CDD

Niveau de diplôme exigé : Bac + 5 ou équivalent

Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle

Le centre Inria d'Université Côte d'Azur regroupe 37 équipes de recherche et 8 services d'appui. Le personnel du centre (500 personnes environ) est composé de scientifiques de différentes nationalités, d'ingénieurs, de techniciens et d'administratifs. Les équipes sont principalement implantées sur les campus universitaires de Sophia Antipolis et Nice ainsi que Montpellier, en lien étroit avec les laboratoires et les établissements de recherche et d'enseignement supérieur (Université Côte d'Azur, CNRS, INRAE, INSERM ...), mais aussi avec les acteurs économiques du territoire.

Présent dans les domaines des neurosciences et biologie computationnelles, la science des données et la modélisation, le génie logiciel et la certification, ainsi que la robotique collaborative, le Centre Inria d'Université Côte d'Azur est un acteur majeur en termes d'excellence scientifique par les résultats obtenus et les collaborations tant au niveau européen qu'international.

Mission confiée

Context

Future sixth-generation (6G) networks will be highly heterogeneous, with the massive development of mobile edge computing inside networks. Furthermore, 6G is expected to support dynamic network environments and provide diversified intelligent services with stringent Quality of Service (QoS) requirements. Various new intelligent applications and services will emerge (including augmented reality (AR), wireless machine interaction, smart city, etc) and will enable tactile communications and Internet of everything (IoE). This will challenge wireless networks in the dimensions of delay, energy consumption, interaction, reliability, and degree of intelligence and knowledge, but also in the dimension of information and data sharing. In turn, 6G networks will be expected about leveraging data at the next step of the new communication system generation. First of all, they will generate large amounts of data much more data than 5G networks: multiple sources as Core, Radio Access Network, OAM, User Equipments (UEs) but also as private and/or personal devices/machines massively connected, data-generator applications as sensing, localization, context-awareness services etc. Besides, unlike today's networks where traffic is almost entirely centralized, most 6G traffic will remain localized and highly distributed. The communication system will not only provide the bits reliably, but more importantly will provide the intelligent data processing through connectivity and resources computing in the devices, the edge, and the cloud in the network. For this, with Artificial Intelligence (AI) and Machine Learning (ML), machines will bring to networks the necessary intelligence very close to the place of action and decision-making and will also make data sharing possible.

Reliable and efficient transmission, data privacy and security are great challenges in data sharing. Specially for 5G advanced and 6G networks data is distributed with the wide deployment of various connected Internet of Things (IoT) devices, and are generated from many distributed network nodes, e.g., end users, small Base Stations or Distributed Units and the network edge. Also, how to collect/share efficiently data from multiple sources (e.g., sensors or device) up to AI/ML-based Network applications/services of Orchestration and Automation Layer (network management system) in Edge? The models shall be trained, updated regularly and operate in real-time.

Recently, generative models have been demonstrated playing a key role in data sharing while preserving privacy and security. They are able to generate synthetic data which distribution is similar to the original data one. So, instead of sending original data, many applications (medical or financial) use them to transfer data. Generative models are shown be useful in many scenarios such as health and financial applications [VSV+22]. However, the highly distributed architecture in 5G advanced/6G motivates the need for distributed, multi-agent learning for building generative models located at given anchor points of data collection (Edge server or Central Units) inside the RAN/Edge.

Challenges and objectives

We aim to design a communication-efficient and privacy-preserving on demand framework such that the local agents inside RAN/Edge cooperatively generate a synthetic dataset which represents well the
global data distribution for model utility. To this end, one can train a generative adversarial network in a federated way [AMR+20], where the agents and the server alternatively minimize the loss function of the discriminator and the generator. However, deep generative models have a tendency to memorize the training examples which may leak private information [HMDC19, CYZF20]. While, applying the traditional privacy-preserving defense such as differential privacy mechanism [Dwo06] will degrade the generative model's utility and thus influences the synthetic data quality. Moreover, the training requires 500-10000 communication rounds in practice for convergence (see [KMA+21, Table 2]) which is expensive for communication cost. Recently, there is another work [ZCL+22] where the server makes uses of all the local trained models to train a generator, which minimizes the communication cost to only one round. However, transferring these local models are extremely dangerous as they can be used to infer the private information on the dataset of devices [FJR15, YGFJ18]. While, applying the traditional privacy-preserving defense such as differential privacy mechanism [Dwo06] will degrade the generative model's utility and thus influences the synthetic data quality. Moreover, the training requires 500-10000 communication rounds in practice for convergence (see [KMA+21, Table 2]) which is expensive for communication cost. Recently, there is another work [ZCL+22] where the server makes uses of all the local trained models to train a generator, which minimizes the communication cost to only one round. However, transferring these local models are extremely dangerous as they can be used to infer the private information on the dataset of devices [FJR15, YGFJ18].

We will first compare the above-mentioned existing methods for synthetic dataset generation, in terms of their trade-offs on model accuracy, data similarity, communication cost, model compression and privacy. Then, to expose their privacy vulnerability, we will design computational-efficient attacks, for both passive and active adversary cases. Finally, we will design a framework with better trade-off for the task.

Teams and supervision

- INRIA : COATI (Frédéric Giroire, Chuan Xu), EPIONE (Marco Lorenzi)
- NOKIA: Bell Labs Core Research
- 3-years PhD to be hosted in Sophia Antipolis. The doctoral student will be supervised by his academic supervisor and his industrial supervisor.

Skills

The candidate should have a solid mathematical background, good programming skills and previous experience with PyTorch or TensorFlow. He/She should also be knowledgeable on machine learning, especially generative neural networks, and have good analytical skills. We expect the candidate to be fluent in English.

References

Principales activités

Research

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Rémunération

Durée: 36 mois
Localisation: Sophia Antipolis, France
Rémunération: 2082€ brut mensuel (année 1 & 2) et 2190€ brut mensuel (année 3)

Informations générales

- Thème/Domaine : Réseaux et télécommunications
 Système & réseaux (BAP E)
- Ville : Sophia Antipolis
- Centre Inria: Centre Inria d'Université Côte d'Azur
- Date de prise de fonction souhaitée : 2024-01-01
- Durée de contrat : 4 ans
- Date limite pour postuler : 2024-06-30

Contacts

- Équipe Inria : COATI
- Directeur de thèse :
 Giroire Frédéric / Frederic.Giroire@inria.fr

A propos d’Inria

Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L’institut s’efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l’économie.

Attention : Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d’autres canaux n’est pas garanti.

Consignes pour postuler

Sécurité défense :

Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.

Politique de recrutement :

Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.