PhD Position F/M Latency-Driven resources placement in Fog-based IoT systems

La description de l'offre ci-dessous est en Anglais

Type de contrat : CDD

Niveau de diplôme exigé : Bac + 5 ou équivalent

Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle

The Inria Rennes - Bretagne Atlantique Centre is one of Inria's eight centres and has more than thirty research teams. The Inria Center is a major and recognized player in the field of digital sciences. It is at the heart of a rich R&D and innovation ecosystem: highly innovative PMEs, large industrial groups, competitiveness clusters, research and higher education players, laboratories of excellence, technological research institute, etc.

Mission confiée

Cloud computing and its three facets (IaaS, PaaS and SaaS) have become essential in today Internet Applications, offering many advantages such as scalability, elasticity or flexibility. With its different service models, the cloud still faces many issues prone to impact either the end-user (QoS), the provider (Cost) and the environment (Sustainability).

The Fog computing is a recent paradigm that address such issues by provisioning resources outside the cloud and closer to the end-device, at the edge of the network. This allows to reduce the latency and minimize the traffic between end-user and the cloud platform [3]. Several studies have shown that fog systems can indeed reduce the latency compared to cloud systems, but this reduction is not guaranteed and will highly depend on the components placement, leading sometimes to worse performance [8]. It has been also demonstrated that less traffic is sent to the cloud when using fog systems. However, a lack of a proper monitoring or reconfiguration mechanism in the fog exists, especially when the application is related to the IoT [7], where the cloud infrastructure is known not to be a viable solution.

However, evaluating realistic large-scale fog infrastructure constitute a complex task given the cost of deployment and the absence of a realistic view of the real-world deployments. In an IoT context, geo-distributed fog infrastructures mostly rely on SDN approaches [5] that contribute to conceal the networking aspects such as the topology or the routing decisions [8]. In consequence, it appears that the impact of the elasticity of a fog solution is mainly evaluated on the data plane side [4].

In the context of IoT applications (i.e. critical response time environments such as Smart City sensing or Vehicular networks) latency is at the center of a tremendous number of studies to optimize the placement of resources in distributed architectures. To ensure that the quality of service is guaranteed, several solutions exist to reconfigure the components placement (migration) and can reduce the overall latency by changing the components and routes. However, knowing precisely which component is the source of the problematical latency remains scarcely addressed. When taking a decision for a reconfiguration or a migration, which can be triggered due to latency issue, it can be beneficial to check if the source of the latency can be solved before instantiating a migration or a full reconfiguration. Some studies exist where a comparison of response time is done between the major cloud actors depending on the load [1, 6]. Proper measurement protocols exist but always refer to specific case studies [2] and would not allow to be integrated in fog systems.

The objective of this thesis is to study the optimization of resource placement in Fog-based IoT systems based on latency measurement, by evaluating the control plane cost of a change in the architecture. It will particularly address the problem of how to identify the origin of a latency issue, and based on this finding, propose an optimization that take into account the cost and elasticity of the control plane.

References:

[1] DaDniel GeDhberger, DaDvid BaDla, Markosz MaDliosz, and Csaba SiDmon. Performance evaD- uation of low latency communication alternatives in a containerized cloud environment. In 2018 IEEE 11th

Principales activités

- Explore the State-of-the-Art of the IoT/Fog Emulation/Simulation platform
- Integrate an IoT solution in a Fog architecture platform
- Propose a profile and a classification of latency issues
- Propose an innovative way to optimize a resource placement taking into account the latency metrics and the control plane capabilities

Compétences

- A master degree in distributed systems and/or Cloud computing/Networking
- Good knowledge of distributed systems
- Good programming skills (e.g., C++ and Python)
- Basic knowledge of simulation
- Excellent communication and writing skills in English (Note that knowledge of French is appreciated but not required for this position)

Knowledge of the following technologies is not mandatory but will be considered as a plus:
- Cloud resource scheduling
- Routing, Software Defined networks
- Revision control systems: git, svn
- Linux distribution: Debian, Ubuntu

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Possibility of teleworking (90 days per year) and flexible organization of working hours
- Partial payment of insurance costs

Rémunération

Monthly gross salary amounting to 2051 euros for the first and second years and 2158 euros for the third year

Informations générales

- **Thème/Domaine**: Systèmes distribués et intergiciels
- **Système & réseaux** (BAP E)
- **Ville**: Rennes
- **Centre Inria**: Centre Inria de l'Université de Rennes
- **Date de prise de fonction souhaitée**: 2024-09-01
- **Durée de contrat**: 3 ans
- **Date limite pour postuler**: 2024-05-31
Contacts

- Équipe Inria: MAGELLAN
- Directeur de thèse: Lemercier Francois / francois.lemercier@irisa.fr

A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

Doing a PhD is a job unlike any other. Please read this document carefully to decide whether a PhD is the right career move for you:

https://medium.com/great-research/do-you-need-a-ph-d-f78d2fb0f286

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler

Please submit online: your resume, cover letter and letters of recommendation eventually

For more information, please contact francois.lemercier@irisa.fr

Sécurité défense:

Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST).
L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement:

Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.