Offre n°2024-08026

PhD Position F/M PhD: Generation of software variants

Le descriptif de l'offre ci-dessous est en Anglais

Type de contrat : CDD

Niveau de diplôme exigé : Bac + 5 ou équivalent

Autre diplôme apprécié : PhD

Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle

The Inria Centre at Rennes University is one of Inria's eight centres and has more than thirty research teams. The Inria Centre is a major and recognized player in the field of digital sciences. It is at the heart of a rich R&D and innovation ecosystem: highly innovative PMEs, large industrial groups, competitiveness clusters, research and higher education players, laboratories of excellence, technological research institute, etc.

Contexte et atouts du poste

This PhD thesis will be carried out in the DiverSE team [https://www.diverse-team.fr/] which is located in Rennes. DiverSE's research is in the area of software engineering.

Mission confiée

Many software systems leverage different mechanisms (feature toggles, compiler flags, configuration files, command-line parameters, etc.) and offer numerous configuration options (or features) that can be combined to generate variants [4]. All these mechanisms aim at augmenting the configurability and features of the system, with positive effects on functionality and performance. The generative nature of LLMs makes them good candidates to produce various software variants with several possible applications: software product lines, self-adaptive system, or simply software systems that want to offer more variants to fit different requirements.

Several research topics are thus of interest in the field of LLM for configurable systems, software product lines, self-adaptive system, or simply software systems that want to offer more variants.

A first line of research is that LLM can be used to synthesize software variations based on requirements provided as prompts or high-level feature descriptions. As explored in [1], the idea is to use LLM as compilers capable of synthesizing code variants, corresponding to features, out of prompts written in natural language. First, LLMs can be used to synthesize software variations based on requirements provided as prompts or high-level feature descriptions. As explored, LLMs can act as compilers capable of synthesizing code variants, corresponding to features, out of prompts written in natural language [1]. In [1], we showed how LLMs can assist developers in implementing variability in different programming languages (C, Rust, Java, TikZ, etc.) and mechanisms (conditional compilation, feature toggles, command-line parameters, template, etc.). With "features as prompts", there is hope to raise the level of abstraction, increase automation, and bring more flexibility when synthesizing and exploring software variants. Out of prompts, LLMs can assist developers in implementing variability in different programming languages (C, Rust, Java, TikZ, etc.) and mechanisms (conditional compilation, template-based generator, etc.). The applicability of LLMs for synthesizing code variants seems broad (e.g., we envision to synthesize configuration files in the context of infrastructure as code) but deserves more research. However, there is a major barrier: LLMs are by construction stochastic, non-determinist and highly sensitive to prompt variations -- and so are corresponding implementations of features and variability. A second line is as follows: LLMs can handle high-level requirements and objectives to suggest influential and interpretable configuration options, helping developers make well-informed configuration decisions. Second, LLMs can handle high-level requirements and objectives to suggest influential and interpretable configuration options, helping developers make well-informed configuration decisions. Though statistical learning has been largely employed in this context [3], we believe that LLMs can also bring values when offering recommender and predictive models that estimate software performance based on various configuration settings. These models can communicate to developers or end-users interpretable insights about the complex relationships between configurations and system performance. Hence, LLMs are complementary to statistical learning and symbolic reasoning when handling large variants' space. An interesting perspective is to leverage, in addition to the code, different sources of information (coming from mailing list, documentation, man pages, issues, and discussions) to integrate configuration knowledge. Finally, we will investigate the use of LLMs for automatic feature identification and modeling within software systems. We aim to develop techniques that can identify and represent configurable units (features) effectively [2]. Preliminary experiments suggest that LLMs can either locate features into unmanaged code variants or refactor a configurable system with another set of (meaningful) features.
All of these research directions need further inquiries to propose valid approaches, as variations in prompts or temperature may introduce significant variability-related issues and lead to incorrect generations. All of these research directions need further inquiries to propose valid approaches. One challenge is that LLMs are sensitive to perturbations, and small variations in prompts may introduce significant variability-related issues and lead to incorrect generated variants. We aim to create specific benchmarks for the task of generating software variants, with the objective of continuously evaluating the robustness of LLMs in handling large variants’ space.

It will also guide the development of automated techniques to refine the prompts or provide additional context, thereby enhancing the LLM’s understanding and quality of variants.

Principales activités

The PhD candidate will investigate the following research questions:
- How to use LLM to generate software variants?
- What is the most suitable granularity for generating variants?
- What contextual information needs to be built up for effective generation?

Compétences

You need to:
- have (or soon receive) a Masters degree in computer science/engineering, informatics, or related fields
- be ok with assisting in teaching and in taking courses where needed
- be ok investing 3+ years as a "research apprentice" (aka PhD student)

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Possibility of teleworking (90 days per year) and flexible organization of working hours
- Partial payment of insurance costs

Rémunération

Monthly gross salary: 2100€ during the 2 1st years and 2200€ during the 3rd year.

Informations générales

- Thème/Domaine : Programmation distribuée et génie logiciel
 Ingénierie logicielle (BAP E)
- Ville : Rennes
- Centre Inria : Centre Inria de l’Université de Rennes
- Date de prise de fonction souhaitée : 2024-10-01
- Durée de contrat : 3 ans
- Date limite pour postuler : 2024-08-22

Contacts
A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

You need to:

- be really excited about our project
- be persistent (get back up and continue when things don't work out as planned -- true research rarely works out as planned)
- be fearless (e.g., be ok hacking a virtual machine, a compiler, a kernel, or implementing a complex algorithm)
- have a small child's attitude (to want to understand and learn about everything they encounter)
- have an engineer's attitude (not to take the first solution that comes to mind, but to look at the key alternatives)
- have a researcher's attitude (to want to truly understand something, and to not be satisfied with the first best explanation)
- want to look at the simple and obvious before exploring the complicated
- be able to focus (to ignore the many other cool things one could also do)
- derive pleasure from coming up with a logical and clear argument or explanation
- like to read (books, papers, papers, papers)
- like to write (prospectus, proposal, dissertation, and papers)
- like to present (at conferences, or in class)
- like to convince others using sound arguments
- be ok working hard
- under-promise and over-deliver
- be happy staying in Brittany for quite some time
- be ok traveling long distance from time to time (e.g., for conferences)

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler

Please submit online : your resume, cover letter and letters of recommendation eventually

Sécurité défense :
Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.