Post-Doctoral Research Visit F/M Multigraded elimination, resultants and discriminants
Type de contrat : CDD
Niveau de diplôme exigé : Thèse ou équivalent
Fonction : Post-Doctorant
A propos du centre ou de la direction fonctionnelle
The Inria center at Université Côte d'Azur includes 42 research teams and 9 support services. The center’s staff (about 500 people) is made up of scientists of different nationalities, engineers, technicians and administrative staff. The teams are mainly located on the university campuses of Sophia Antipolis and Nice as well as Montpellier, in close collaboration with research and higher education laboratories and establishments (Université Côte d'Azur, CNRS, INRAE, INSERM ...), but also with the regional economic players.
With a presence in the fields of computational neuroscience and biology, data science and modeling, software engineering and certification, as well as collaborative robotics, the Inria Centre at Université Côte d'Azur is a major player in terms of scientific excellence through its results and collaborations at both European and international levels.
Contexte et atouts du poste
We are seeking applications for a Postdoctoral Researcher position in the areas of applied algebraic geometry, elimination theory, and symbolic-numeric computation. This position offers an exciting opportunity to engage in cutting-edge research at the intersection of pure and applied mathematics, with potential applications in geometric modeling [BC21], in polynomial system solving [BFMT21,BCN22], or in arithmetic [BMT20, BN17].
References
[BC21] Laurent Busé and Marc Chardin. Fibers of rational maps and elimination matrices: an application oriented approach. Commutative Algebra - Expository papers dedicated to David Eisenbud on the occasion of his 75th birthday, Springer, p. 189–217, 2021.
[BCN22] Laurent Busé, Marc Chardin and Navid Nemati. Multigraded Sylvester forms, duality and elimination matrices. Journal of Algebra, 609(1):514-546, 2022
[BFMT21] Matías R Bender, Jean-Charles Faugère, Angelos Mantzaflaris, Elias Tsigaridas. Koszul-type determinantal formulas for families of mixed multilinear systems. SIAM Journal on Applied Algebra and Geometry, 5(4):589-619, 2021
[BMT20] Laurent Busé, Angelos Mantzaflaris and Elias Tsigaridas. Matrix formulae for resultants and discriminants of bivariate tensor-product polynomials. Journal of Symbolic Computation, 98:65-83, 2020
[BN17] Laurent Busé and Ibrahim Nonkané. Discriminants of complete intersection space curves. ACM proceedings of ISSAC, p. 69-76, 2017.
Position: One-year post-doctoral position in the research team Aromath.
Location: Inria Centre at Université Côte d'Azur.
Starting date: flexible, but before end of May 2025.
Contact: Laurent Busé and Angelos Mantzaflaris.
Application: Interested candidates should submit the following two documents:
- A curriculum vitae (CV) including a list of publications.
- A cover letter explaining their research background and interest in the position.
Review of applications will begin immediately and continue until the position is filled.
Inria Centre at Universtié Côte d'Azur offers a dynamic research environment with opportunities for collaboration and growth, and we encourage applications from candidates in the full spectrum of algebraic geometry and symbolic computation.
Mission confiée
Polynomial systems, equivalently algebraic subvarieties, in a projective space have been extensively studied and there exist many tools to capture their geometry such as minimal free resolutions, syzygies or elimination ideals and matrices. When the ambient space is a product of projective spaces the study of polynomial systems is more delicate. Nevertheless, multi-projective polynomial systems appear in many situations and are of interest for both applied and theoretical purposes. Their study is a very active research area and this research program falls in this context.
The successful candidate, depending on his/her background and interests, will work on topics related to the study of algebro-geometric properties of elimination ideals (e.g. equations of Rees algebra, estimation of Castenuovo-Mumfprd regularity, etc), to the extension of the theory of mutli-projective resultants and discriminants, with an eye on algorithmic aspects that bridge symbolic and numerical approaches as well as their software implementation.
Principales activités
Responsibilities
- Conduct high-quality research in applied algebraic geometry, elimination theory, and symbolic-numeric computation.
- Develop and analyze new algorithms for solving algebraic systems using a mix of symbolic and numerical methods.
- Collaborate with other members of Inria and participate in interdisciplinary projects.
- Prepare research papers and present results at conferences and workshops.
Compétences
Qualifications
- A Ph.D. in Mathematics, Computer Science, or a closely related field, with a strong focus on Algebraic Geometry, Computational Algebra, or Symbolic-Numeric Computation.
- Solid knowledge of elimination theory and experience with symbolic and numerical methods for solving algebraic systems.
- Proficiency in programming and familiarity with some computational algebra software (e.g., Macaulay2, Singular, Maple, or MATLAB), experience with C++ is a plus.
- Strong analytical skills and a track record of high-quality research publications. Excellent communication and teamwork skills.
Desirable Skills
- Experience in applying algebraic geometry and its computational aspects, with a view in numerical computations.
- Knowledge of modern algorithms in algebraic elimination, such as Gröbner bases or resultants.
- Experience working with hybrid symbolic-numeric methods, numerical algebraic geometry and software development in C++.
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Contribution to mutual insurance (subject to conditions)
Rémunération
Gross Salary : 2788 € per month
Informations générales
- Thème/Domaine :
Algorithmique, calcul formel et cryptologie
Calcul Scientifique (BAP E) - Ville : Sophia Antipolis
- Centre Inria : Centre Inria d'Université Côte d'Azur
- Date de prise de fonction souhaitée : 2025-01-01
- Durée de contrat : 12 mois
- Date limite pour postuler : 2024-12-15
Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
Consignes pour postuler
Applications must be submitted online on the Inria website. Collecting applications by other channels is not guaranteed.
Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.
Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
Contacts
- Équipe Inria : AROMATH
-
Recruteur :
Busé Laurent / Laurent.Buse@inria.fr
A propos d'Inria
Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.