Internship - Diffusion-based Unsupervised Joint Speech Enhancement, Dereverberation, and Separation
Type de contrat : Convention de stage
Niveau de diplôme exigé : Bac + 4 ou équivalent
Fonction : Stagiaire de la recherche
Contexte et atouts du poste
This master internship is part of the REAVISE project: “Robust and Efficient Deep Learning based Audiovisual Speech Enhancement” (2023-2026) funded by the French National Research Agency (ANR). The general objective of REAVISE is to develop a unified audio-visual speech enhancement (AVSE) framework that leverages recent methodological breakthroughs in statistical signal processing, machine learning, and deep neural networks in order to design a robust and efficient AVSE framework.
Mission confiée
Speech restoration regroups several downstream tasks that share a common goal of recovering a ground-truth speech signal that has been affected by one or many deformations. These deformations can be for example due to: a) a noise or a concurrent speech that adds up to the original speech signal, b) reflection of the speech signal by the walls in a room, c) limited dynamic range of a recording system that clips the speech waveform’s amplitudes exceeding a certain threshold, d) packet loss occurring in transmission in telecommunication systems. Each of these degradations, has been most of the time studied separately in the literature leading to respective techniques like a) speech enhancement or speech separation b) dereverbation, c) declipping, and d) inpainting. Recently, the interest increased in learning universal models able to tackle simultaneously two or more tasks of speech restoration [1]. This is motivated by the fact that in real-life applications, a speech signal is likely tainted by several degradations at once. Various approaches have been proposed. They can be generative based [2, 3] or not [4], but they are mostly implemented in a supervised way leading to the requirement of pairs of training data, where each pair is composed of a degraded speech and the corresponding clean speech target. Better generalization for such a model is achievable at the cost of important training data. Particularly, speech denoising (or enhancement) is known to be vulnerable to mismatches since its standard approaches heavily rely on paired clean/noisy speech data to achieve strong performance.
Principales activités
Recent advances in generative modeling have seen the emergence of diffusion models as strong data distribution learners. It consists of gradually turning clean data into noise and learning a deep neural network to reverse this process so that one can generate samples of the clean data distribution starting from a pure Gaussian noise for example. This generative modeling has been successfully applied in an unsupervised way individually for the task of speech enhancement [10], and speech dereverberation [5, 6]. That is, the training no longer requires paired data as opposed to the supervised; only the clean speech data is required in training, and the enhancement or dereverberation task is performed in inference with some statistical modeling. Promising results for generalization have been found for these approaches. Utilizing diffusion models [7] also attempts to solve individually in an unsupervised way, various speech restoration but with little success particularly for the speech separation task while in a supervised way and still with diffusion model [8, 9] achieve competitive performance.
The goal of this internship will be threefold:
- Address joint speech enhancement and dereverberation tasks rather than separately with diffusion models in an unsupervised way,
- Address speech separation, with a diffusion model learned in an unsupervised way (i.e. learned only on
clean speech), - Address the three tasks (enhancement, dereverberation, separation) with a single unsupervised framework.
Compétences
Preferred qualifications for candidates include a strong foundation in statistical (speech) signal processing, and computer vision, as well as expertise in machine learning and proficiency with deep learning frameworks, particularly PyTorch.
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage
Rémunération
€ 4.35/hour
Informations générales
- Thème/Domaine :
Langue, parole et audio
Calcul Scientifique (BAP E) - Ville : Villers lès Nancy
- Centre Inria : Centre Inria de l'Université de Lorraine
- Date de prise de fonction souhaitée : 2025-04-01
- Durée de contrat : 6 mois
- Date limite pour postuler : 2024-12-15
Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
Consignes pour postuler
Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.
Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
Contacts
- Équipe Inria : MULTISPEECH
-
Recruteur :
Sadeghi Mostafa / mostafa.sadeghi@inria.fr
L'essentiel pour réussir
Prospective applicants are invited to submit their academic transcripts, a detailed curriculum vitae (CV), and, if they choose, a cover letter. The cover letter should highlight the reasons for their enthusiasm and interest in this specific project.
A propos d'Inria
Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.