PhD Position F/M Phase Transitions in Artificial Neural Networks
Type de contrat : CDD
Niveau de diplôme exigé : Bac + 5 ou équivalent
Fonction : Doctorant
A propos du centre ou de la direction fonctionnelle
The Inria centre at Université Côte d'Azur includes 42 research teams and 9 support services. The centre's staff (about 500 people) is made up of scientists of different nationalities, engineers, technicians and administrative staff. The teams are mainly located on the university campuses of Sophia Antipolis and Nice as well as Montpellier, in close collaboration with research and higher education laboratories and establishments (Université Côte d'Azur, CNRS, INRAE, INSERM ...), but also with the regiona economic players.
With a presence in the fields of computational neuroscience and biology, data science and modeling, software engineering and certification, as well as collaborative robotics, the Inria Centre at Université Côte d'Azur is a major player in terms of scientific excellence through its results and collaborations at both European and international levels.
Mission confiée
It is well known that large ANNs can be trained to achieve very good performance on a variety of tasks, and once they have achieved such good performance, they can be pruned (i.e., sparsified) to a small fraction of their initial weights without significant loss of performance. It is then natural to ask whether one could directly train sparse ANNs that are as sparse as those obtained by first training and then pruning a large ANN. It is empirically observed, however, that trying to train a sparse ANN naively in this way doesn’t lead to good performance. The Lottery Ticket Hypothesis (LTH) [FC18] establishes that such sparse ANNs (called lottery tickets) do exist by empirically showing that, through a relatively computationally expensive procedure, sufficiently large randomly initialized ANNs contain a sparse subnetwork that can be trained to good performance.
In 2019 and 2020, a couple of papers [ZLL19,RWK20] showed that it is possible to use gradient descent to train by pruning: given a sufficiently large and randomly initialized ANN, one can efficiently learn to identify a subnetwork that performs well on a given classification task, without changing to the initial random weights. Such an empirical observation was very relevant in the context of the LTH: not only do sufficiently large randomly initialized ANNs contain subnetworks that can be efficiently trained, but they also contain subnetworks that already perform well. This motivated subsequent research on a stronger version of the LTH: the Strong Lottery Ticket Hypothesis [PRN20,MYS20], which investigates how large the initial random ANN should be in order to be able to approximate any function within a given class by appropriate pruning (in other words, one tries to understand how complete is the space of possible functions represented by the set of possible subnetworks of the random ANN).
The SLTH has been proven for several ANN architectures [NFG24], with the goal of providing insights on the tradeoff between sparsity and overparameterization, and the limits of ANN compression techniques such as pruning. Current results suffer, however, of two fundamental limitations. First, they exhibit a gap between upper and lower bounds for the SLTH, which hinders practical predictions. Secondly, they mathematically rely on the ANN weights being continuous. Not only are practical ANNs finite precision, but they also heavily rely on quantization techniques.
Research on the SLTH has crucially relied on the fundamental problem of Random Subset Sum (RSS) [L98,DDG23], in which one is asked to prove how large a set of random numbers needs to be so that every number in a given target set
can be approximated by the sum of a suitable subset of
. Interestingly, the RSS is closely related, in a precise way, to the problem of Random Number Partition (RNP), for which sharp analyses in the discrete setting have been provided [BCP01,BCM04]. The purpose of this project is to leverage these classical results on RNP to provide sharp bounds on the SLTH which also account for weight quantization. The latter aspect, in particular, would be a first of its kind and could offer deep insights into a technique which is universally used nowadays for making deep learning viable.
References
BCM04. Borgs, C., Chayes, J. T., Mertens, S. & Pittel, B. Phase diagram for the constrained integer partitioning problem. Random Structures & Algorithms, 2004.
BCP01. Borgs, C., Chayes, J. & Pittel, B. Phase transition and finite-size scaling for the integer partitioning problem. Random Structures & Algorithms, 2001.
DDG23. Da Cunha, A. C. W., d’Amore, F., Giroire, F., Lesfari, H., Natale, E. & Viennot, L. Revisiting the Random Subset Sum Problem. In ESA 2023.
FC18. Frankle, J. & Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. in ICLR 2018.
L98. Lueker, G. S. Exponentially small bounds on the expected optimum of the partition and subset sum problems. Random Structures & Algorithms 1998.
MYS20. Malach, E., Yehudai, G., Shalev-shwartz, S. & Shamir, O. Proving the lottery ticket hypothesis: pruning is all you need. In JMLR 2020.
NFG24. Natale, E., Ferré, D., Giambartolomei, G., Giroire, F., Mallmann-Trenn, F. On the Sparsity of the Strong Lottery Ticket Hypothesis. In Neurips 2024.
PRN20. Pensia, A., Rajput, S., Nagle, A., Vishwakarma, H. & Papailiopoulos, D. Optimal lottery tickets via SUBSETSUM: logarithmic over-parameterization is sufficient. In Neurips 2020.
RWK20. Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A. & Rastegari, M. What’s Hidden in a Randomly Weighted Neural Network? In CVPR 2020.
ZLL19. Zhou, H., Lan, J., Liu, R. & Yosinski, J. Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask. In NIPS (Neurips) 2019.
Principales activités
- Analyze the requirements and current challenges in the field of sparse artificial neural networks (ANNs).
- Study and review relevant literature on the Lottery Ticket Hypothesis and the Strong Lottery Ticket Hypothesis.
- Develop theoretical frameworks and models for training sparse subnetworks effectively.
- Write documentation and research papers detailing the methodologies, findings, and implications of the project.
- Present research progress and findings at academic conferences and seminars to engage with the machine learning community.
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage
Rémunération
Duration: 36 months
Location: Sophia Antipolis, France
Gross Salary per month: 2200€ (2025)
Informations générales
- Thème/Domaine :
Calcul distribué et à haute performance
Calcul Scientifique (BAP E) - Ville : Sophia Antipolis
- Centre Inria : Centre Inria d'Université Côte d'Azur
- Date de prise de fonction souhaitée : 2025-06-01
- Durée de contrat : 3 ans
- Date limite pour postuler : 2025-04-12
Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
Consignes pour postuler
Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.
Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
Contacts
- Équipe Inria : COATI
-
Directeur de thèse :
Natale Emanuele / emanuele.natale@inria.fr
A propos d'Inria
Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.