PhD Position F/M Optimizing Controllable Text Generation: A Comparative Study of Alignment Strategies and Inference-Time Scaling
Type de contrat : CDD
Niveau de diplôme exigé : Bac + 5 ou équivalent
Fonction : Doctorant
Contexte et atouts du poste
la thèse se déroulera dans le cadre de PR[AI]RIE-PSAI et sera co-encadrée par Marc LELARGE et Guillaume BAUDART.
Non-discrimination, ouverture et transparence. L’ensemble des partenaires de PR[AI]RIE-PSAI s’engagent à soutenir et promouvoir l’égalité, la diversité et l’inclusion au sein de ses communautés. Nous encourageons les candidatures issues de profils variés, que nous veillerons à sélectionner via un processus de recrutement ouvert et transparent
Mission confiée
Principales activités
The overarching goal of this PhD project is to deepen the scientific understanding of controllable text generation by systematically evaluating and enhancing model alignment techniques for large language models (LLMs). This research will focus on three principal alignment families — Supervised Fine-Tuning (SFT), Reinforcement Learning (RL), and Controlled Decoding — and will extend this analysis to include inference-time scaling strategies, which have shown increasing promise in recent research. The project will particularly emphasize structured and rule-governed domains such as code generation and formal theorem proving.
1. Comparative Study of Alignment Techniques
Supervised Fine-Tuning (SFT): Investigate SFT as a baseline alignment strategy, where labeled datasets are used to condition the model toward desired behaviors. This approach will be analyzed for its ability to enforce task-specific accuracy and domain adherence.
Reinforcement Learning (RL): Explore reinforcement learning techniques, including KL-regularized RL and Reinforcement Learning with Human Feedback (RLHF), as methods for fine-tuning LLMs in settings where explicit labels are scarce but reward signals can guide alignment toward human-defined objectives.
Controlled Decoding: Study controlled decoding strategies such as prefix scoring, blockwise decoding, and token-level filtering to steer output at inference time without modifying the model’s underlying weights. This line of inquiry focuses on low-overhead control and real-time adaptability.
2. Incorporation of Inference-Time Compute Scaling
This research will also focus on the emerging role of inference-time compute scaling as a means to improve the quality of model outputs without retraining or modifying the underlying model parameters. Beyond the well-known benefits of scaling compute during training, recent work has highlighted that more sophisticated inference-time strategies — including token-level generation algorithms, meta-generation techniques that rerank multiple candidate outputs, and efficiency-oriented decoding frameworks — can significantly enhance alignment and output diversity. The project will explore how these inference-time approaches contribute to controllability and how they can be combined with Supervised Fine-Tuning, Reinforcement Learning, and Controlled Decoding to strike a balance between computational efficiency and output quality, especially in scenarios where training-time resources are limited or inference is constrained by real-world application demands.
We will design and experiment with hybrid pipelines that combine SFT, RL, Controlled Decoding, and inference-time scaling techniques to create alignment strategies that balance control, flexibility, and computational cost.
3. Application to Structured Generation Tasks
The effectiveness of the proposed alignment and inference-time scaling strategies will be evaluated through a combination of domain-specific and general-purpose metrics. For structured generation tasks such as code synthesis and formal theorem proving, particular attention will be paid to the syntactic and structural correctness of the outputs, ensuring they conform to the expected formal languages and formats. Logical and semantic coherence will be assessed to verify that the generated content is not only grammatically correct but also factually and deductively sound. In the case of theorem proving, proof verification success rates will be measured using automated proof checkers to ensure formal validity. Finally, the efficiency of generation will be systematically analyzed by considering both the computational cost of each method and the quality of the outputs, highlighting the trade-offs between resource usage and alignment performance.
4. Expected Contributions
-
A comprehensive and reproducible comparative analysis of SFT, RL, and Controlled Decoding in structured text generation settings.
-
Development of novel hybrid approaches for combining alignment techniques effectively.
-
Open-source tools and benchmarks for assessing controllability in code generation and formal reasoning.
-
Potential peer-reviewed publications and dissemination of research findings at leading machine learning and natural language processing venues.
References:
-
Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C., & Socher, R. (2019). CTRL: A Conditional Transformer Language Model for Controllable Generation. arXiv preprint arXiv:1909.05858
-
Jones, A.L. (2021) Scaling Scaling Laws with Board Games. arxiv preprint arXiv:2104.03113
-
Mudgal, S., Lee, J., Ganapathy, H., Li, Y., Wang, T., Huang, Y., & Beirami, A. (2024). Controlled Decoding from Language Models. arXiv preprint arXiv:2310.17022
-
Willard B.T., Louf R. (2023) Efficient Guided Generation for Large Language Models. arXiv preprint arXiv:2307.09702
-
Liang, X., Wang, H., Wang, Y., Song, S., Yang, J., Niu, S., Hu, J., Liu, D., Yao, S., Xiong, F., & Li, Z. (2024). Controllable Text Generation for Large Language Models: A Survey. arXiv preprint arXiv:2408.12599
-
Welleck S., Bertsch A., Finlayson M., Schoelkopf H., Xie A., Neubig G., Kulikov I., Harchaoui Z. (2024). From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models . arXiv preprint arXiv:2406.16838
Compétences
Skills and Tools
- Programming: Python, PyTorch
- Machine Learning: NLP, Transformer-based models, Reinforcement Learning
- Formal verification: Rocq, Lean.
- Data Processing: Hugging Face Transformers
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking
- Flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage
Informations générales
- Thème/Domaine :
Optimisation, apprentissage et méthodes statistiques
Statistiques (Big data) (BAP E) - Ville : Paris
- Centre Inria : Centre Inria de Paris
- Date de prise de fonction souhaitée : 2025-09-01
- Durée de contrat : 3 ans
- Date limite pour postuler : 2025-05-23
Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
Consignes pour postuler
Required documents :
- a resume;
- a one-page cover letter describing the applicant's ambitions for the subject described and the relevance of the application to the subject description;
- copies of most recent diplomas.
Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.
Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
Contacts
- Équipe Inria : ARGO
-
Directeur de thèse :
Lelarge Marc / Marc.Lelarge@inria.fr
A propos d'Inria
Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.