Offre n°2023-06907

PhD Position F/M Modeling and Simulation of Exascale Storage Systems

Le descriptif de l’offre ci-dessous est en Anglais

Type de contrat : CDD

Niveau de diplôme exigé : Bac + 5 ou équivalent

Autre diplôme apprécié : Master’s degree

Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle

The Inria Rennes - Bretagne Atlantique Centre is one of Inria's eight centres and has more than thirty research teams. The Inria Center is a major and recognized player in the field of digital sciences. It is at the heart of a rich R&D and innovation ecosystem: highly innovative PMEs, large industrial groups, competitiveness clusters, research and higher education players, laboratories of excellence, technological research institute, etc.

Contexte et atouts du poste

Context

This thesis is placed in the context of NumPEx (https://numpex.fr/), a key national project whose goal is to co-design the software stack for the exascale era and prepare applications accordingly. This thesis will be co-supervised by Inria and CEA, respectively the Inria center at the University of Rennes and the CEA center at Bruyères-Le-Châtel, near Paris. Beyond the supervision, collaborations within NumPEx with the different partners of the consortium are to be expected.

PhD Advisors

- François Tessier (Inria)
- Gabriel Antoniu (Inria)
- Philippe Deniel (CEA)
- Thomas Leibovici (CEA)

Location and Mobility

The thesis, co-supervised by Inria and CEA, will be hosted by the KerData team at the Inria research center of Rennes and will include regular visits at the CEA Center of Bruyères-le-Châtel. Rennes is the capital city of Brittany, in the western part of France. It is easy to reach thanks to the high-speed train line to Paris. Rennes is a dynamic, lively city and a major center for higher education and research: 25% of its population are students.

This thesis will also include collaborations with international partners, especially from the US.

The KerData team in a nutshell for candidates

- KerData is a human-sized team currently comprising 5 permanent researchers, 2 contract researchers, 1 engineer and 5 PhD students. You will work in a caring environment, offering a good work-life balance.

- KerData is leading multiple projects in top-level national and international collaborative environments such as within the Joint-Laboratory on Extreme-Scale Computing (https://jlesc.github.io). Our team has active collaboration with high-profile academic institutions all around the world (including the USA, Spain, Germany or Japan) and with industry.
Our team strongly favors **experimental research**, validated by implementation and experimentation of software prototypes with real-world applications on real-world platforms including some of the most powerful supercomputers worldwide.

- The KerData team is committed to personalized advising and coaching, to help PhD candidates train and grow in all directions that are critical in the process of becoming successful researchers.
- Check our [website](https://team.inria.fr/kerdata/) for more about the KerData team here.

Mission confiée

Introduction

Nowadays, there are many scientific fields such as radio-astronomy or weather forecast for example where the need for computing power and data processing capacity goes beyond what current machines can provide. For these workloads, the resources required are such that **supercomputers capable of reaching the exascale** become necessary. To date, only a few machines such as Frontier at Oak Ridge National Laboratory (USA) have this capability, but in the coming months, new systems will be deployed. However, the efficient use of these systems raises new challenges, especially regarding data management.

Indeed, even though High-Performance Computing (HPC) systems are increasingly powerful, there has been a **relative decline in I/O bandwidth**. Over the past ten years, the ratio of I/O bandwidth to computing power of the top three supercomputers has been divided by 10 (see Figure below) while in some scientific computing centers the volume of data stored has been multiplied by 41 [1]. This tends to accentuate congestion and performance variability on often centralized storage systems [2,3]. To mitigate this, **new levels of storage** have been added to recently deployed supercomputers, increasing their complexity. Harnessing this additional storage capacity is an active research topic but little has been done about how to efficiently provision it [4,5].

<table>
<thead>
<tr>
<th>Date</th>
<th>GBps/TFlop/s</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/2010</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>01/2012</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>01/2014</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>01/2016</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>01/2018</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>01/2020</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>01/2022</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Thesis proposal

Dealing with this high degree of storage heterogeneity is a real challenge for scientific workflows and applications. **This PhD thesis proposes to model and simulate heterogeneous storage systems in order to study their behavior, predict their performance and propose innovative algorithmic approaches for better resource utilization.**

Principales activités

One of the aims of this thesis is to **make better use of storage resources** for scientific applications and workflows that are destined to run on exascale supercomputers. Initially, **storage systems such as Lustre and DAOS will be studied, modeled and simulated in an existing WRENCH-based [6] simulator, called StorAlloc [5]**, developed in the team. This study will shed light on the criteria influencing the performance of these systems. Secondly, **advanced resource allocation algorithms will be proposed, implemented and evaluated in the simulator** to overcome the limitations of existing methods (e.g. Lustre uses the disks of its storage system in a simple round-robin manner). Multiple criteria can be taken into account in these algorithms such as contention or energy. Tools developed by the CEA, including the Robinhood policy engine [7] and the outcomes from the IO-SEA European Project [8] will also be used to validate these contributions on real systems. For this work, a strong emphasis will be put on **international collaborations**, especially with the University of Manoa (HI, USA), and on **national partnership** such as with the French SKA team providing a relevant use-case for this work. The candidate will also have the opportunity to be hosted for 3-6 month internships abroad to strengthen the international visibility of his/her work and benefit from the expertise of other researchers in the field.

References

[3] F. Tessier, V. Vishwanath. “Reproducibility and Variability of I/O Performance on BG/Q: Lessons Learned from a Data...

[8] https://iosea-project.eu/

Compétences

- An excellent Master degree in computer science or equivalent
- Completion of a teaching unit in high-performance computing or distributed computing is an advantage
- Programming skills in C/C++ and Python
- Good communication skills in oral and written English.
- Open-mindedness, strong integration skills and team spirit

Avantages

- Subsidized meals
- Partial reimbursement of public transport costs
- Possibility of teleworking (90 days per year) and flexible organization of working hours
- Partial payment of insurance costs

Rémunération

monthly gross salary amounting to 2051 euros for the first and second years and 2158 euros for the third year

Informations générales

- Thème/Domaine : Calcul distribué et à haute performance
- Calcul Scientifique (BAP E)
- Ville : Rennes
- Centre Inria : Centre Inria de l'Université de Rennes
- Date de prise de fonction souhaitée : 2024-09-01
- Durée de contrat : 3 ans
- Date limite pour postuler : 2024-12-31

Contacts

- Équipe Inria : KERDATA
- Directeur de thèse :
 Tessier François / francois.tessier@inria.fr

A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

L'essentiel pour réussir

The candidate will have to show motivation, autonomy and an ability to initiate links between the research activities carried out at INRIA and at the CEA center.

Attention : Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler
Please submit online: your resume, cover letter and letters of recommendation eventually

For more information, please contact francois.tessier@inria.fr

Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.

Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.